Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
SANCARE is an innovative start-up focused on applying Machine Learning techniques to hospital data. We partner with leading experts in the field to enhance our offerings. Our platform delivers an ergonomic and user-friendly interface to Medical Information Departments, facilitating quick adoption and usability. Users benefit from comprehensive access to all documents forming the electronic patient record, ensuring a seamless experience. As an effective production tool, our solution meticulously tracks each phase of the coding procedure for external validation. By leveraging machine learning, we can create robust predictive models that analyze vast data sets while considering contextual factors—capabilities that traditional rule-based systems and semantic analysis tools fall short of providing. This enables the automation of intricate decision-making processes and the identification of subtle signals that may go unnoticed by human analysts. The machine learning engine behind SANCARE is grounded in a probabilistic framework, allowing it to learn from a significant volume of examples to accurately predict the necessary codes without any explicit guidance. Ultimately, our technology not only streamlines coding tasks but also enhances the overall efficiency of healthcare data management.
Description
Scikit-learn offers a user-friendly and effective suite of tools for predictive data analysis, making it an indispensable resource for those in the field. This powerful, open-source machine learning library is built for the Python programming language and aims to simplify the process of data analysis and modeling. Drawing from established scientific libraries like NumPy, SciPy, and Matplotlib, Scikit-learn presents a diverse array of both supervised and unsupervised learning algorithms, positioning itself as a crucial asset for data scientists, machine learning developers, and researchers alike. Its structure is designed to be both consistent and adaptable, allowing users to mix and match different components to meet their unique requirements. This modularity empowers users to create intricate workflows, streamline repetitive processes, and effectively incorporate Scikit-learn into expansive machine learning projects. Furthermore, the library prioritizes interoperability, ensuring seamless compatibility with other Python libraries, which greatly enhances data processing capabilities and overall efficiency. As a result, Scikit-learn stands out as a go-to toolkit for anyone looking to delve into the world of machine learning.
API Access
Has API
API Access
Has API
Integrations
DagsHub
Databricks Data Intelligence Platform
Guild AI
Intel Tiber AI Studio
Keepsake
MLJAR Studio
Matplotlib
ModelOp
NumPy
Python
Integrations
DagsHub
Databricks Data Intelligence Platform
Guild AI
Intel Tiber AI Studio
Keepsake
MLJAR Studio
Matplotlib
ModelOp
NumPy
Python
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
SANCARE
Country
France
Website
www.sancare.fr/
Vendor Details
Company Name
scikit-learn
Country
United States
Website
scikit-learn.org/stable/
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization