Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Phi-4-mini-reasoning is a transformer-based language model with 3.8 billion parameters, specifically designed to excel in mathematical reasoning and methodical problem-solving within environments that have limited computational capacity or latency constraints. Its optimization stems from fine-tuning with synthetic data produced by the DeepSeek-R1 model, striking a balance between efficiency and sophisticated reasoning capabilities. With training that encompasses over one million varied math problems, ranging in complexity from middle school to Ph.D. level, Phi-4-mini-reasoning demonstrates superior performance to its base model in generating lengthy sentences across multiple assessments and outshines larger counterparts such as OpenThinker-7B, Llama-3.2-3B-instruct, and DeepSeek-R1. Equipped with a 128K-token context window, it also facilitates function calling, which allows for seamless integration with various external tools and APIs. Moreover, Phi-4-mini-reasoning can be quantized through the Microsoft Olive or Apple MLX Framework, enabling its deployment on a variety of edge devices, including IoT gadgets, laptops, and smartphones. Its design not only enhances user accessibility but also expands the potential for innovative applications in mathematical fields.

Description

SmolLM2 comprises an advanced suite of compact language models specifically created for on-device functionalities. This collection features models with varying sizes, including those with 1.7 billion parameters, as well as more streamlined versions at 360 million and 135 million parameters, ensuring efficient performance on even the most limited hardware. They excel in generating text and are fine-tuned for applications requiring real-time responsiveness and minimal latency, delivering high-quality outcomes across a multitude of scenarios such as content generation, coding support, and natural language understanding. The versatility of SmolLM2 positions it as an ideal option for developers aiming to incorporate robust AI capabilities into mobile devices, edge computing solutions, and other settings where resources are constrained. Its design reflects a commitment to balancing performance and accessibility, making cutting-edge AI technology more widely available.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Hugging Face
Azure AI Foundry
Microsoft Azure
RunPod

Integrations

Hugging Face
Azure AI Foundry
Microsoft Azure
RunPod

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Microsoft

Founded

1975

Country

United States

Website

azure.microsoft.com/en-us/blog/one-year-of-phi-small-language-models-making-big-leaps-in-ai/

Vendor Details

Company Name

Hugging Face

Founded

2016

Country

United States

Website

huggingface.co/collections/HuggingFaceTB/smollm2-6723884218bcda64b34d7db9

Product Features

Product Features

Alternatives

Alternatives

Orpheus TTS Reviews

Orpheus TTS

Canopy Labs
Phi-4-reasoning Reviews

Phi-4-reasoning

Microsoft
BitNet Reviews

BitNet

Microsoft
DeepSeek R1 Reviews

DeepSeek R1

DeepSeek
Gemini Nano Reviews

Gemini Nano

Google