Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
OmniParser serves as an advanced technique for converting user interface screenshots into structured components, which notably improves the accuracy of multimodal models like GPT-4 in executing actions that are properly aligned with specific areas of the interface. This method excels in detecting interactive icons within user interfaces and comprehending the meanings of different elements present in a screenshot, thereby linking intended actions to the appropriate screen locations. To facilitate this process, OmniParser assembles a dataset for interactable icon detection that includes 67,000 distinct screenshot images, each annotated with bounding boxes around interactable icons sourced from DOM trees. Furthermore, it utilizes a set of 7,000 pairs of icons and their descriptions to refine a captioning model tasked with extracting the functional semantics of the identified elements. Comparative assessments on various benchmarks, including SeeClick, Mind2Web, and AITW, reveal that OmniParser surpasses the performance of GPT-4V baselines, demonstrating its effectiveness even when relying solely on screenshot inputs without supplementary context. This advancement not only enhances the interaction capabilities of AI models but also paves the way for more intuitive user experiences across digital interfaces.
Description
Qwen2.5-VL marks the latest iteration in the Qwen vision-language model series, showcasing notable improvements compared to its predecessor, Qwen2-VL. This advanced model demonstrates exceptional capabilities in visual comprehension, adept at identifying a diverse range of objects such as text, charts, and various graphical elements within images. Functioning as an interactive visual agent, it can reason and effectively manipulate tools, making it suitable for applications involving both computer and mobile device interactions. Furthermore, Qwen2.5-VL is proficient in analyzing videos that are longer than one hour, enabling it to identify pertinent segments within those videos. The model also excels at accurately locating objects in images by creating bounding boxes or point annotations and supplies well-structured JSON outputs for coordinates and attributes. It provides structured data outputs for documents like scanned invoices, forms, and tables, which is particularly advantageous for industries such as finance and commerce. Offered in both base and instruct configurations across 3B, 7B, and 72B models, Qwen2.5-VL can be found on platforms like Hugging Face and ModelScope, further enhancing its accessibility for developers and researchers alike. This model not only elevates the capabilities of vision-language processing but also sets a new standard for future developments in the field.
API Access
Has API
API Access
Has API
Integrations
Alibaba Cloud
GPT-4
Hugging Face
LM-Kit.NET
ModelScope
Qwen Chat
Integrations
Alibaba Cloud
GPT-4
Hugging Face
LM-Kit.NET
ModelScope
Qwen Chat
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Microsoft
Founded
1975
Country
United States
Website
microsoft.github.io/OmniParser/
Vendor Details
Company Name
Alibaba
Founded
1999
Country
China
Website
qwenlm.github.io/blog/qwen2.5-vl/
Product Features
Product Features
Computer Vision
Blob Detection & Analysis
Building Tools
Image Processing
Multiple Image Type Support
Reporting / Analytics Integration
Smart Camera Integration