Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Fuzz testing, commonly referred to as fuzzing, is a technique used in software testing that aims to discover implementation errors by injecting malformed or semi-malformed data in an automated way. For example, consider a scenario involving an integer variable within a program that captures a user's selection among three questions; the user's choice can be represented by the integers 0, 1, or 2, resulting in three distinct cases. Since integers are typically stored as fixed-size variables, a failure to implement the default switch case securely could lead to program crashes and various traditional security vulnerabilities. Fuzzing serves as an automated method for uncovering software implementation issues, enabling the identification of bugs when they occur. A fuzzer is a specialized tool designed to automatically inject semi-random data into the program stack, aiding in the detection of anomalies. The process of generating this data involves the use of generators, while the identification of vulnerabilities often depends on debugging tools that can analyze the program's behavior under the influence of the injected data. These generators typically utilize a mixture of established static fuzzing vectors to enhance the testing process, ultimately contributing to more robust software development practices.
Description
The Solidity Fuzzing Boilerplate serves as a foundational template designed to simplify the fuzzing process for various components within Solidity projects, particularly libraries. By writing tests just once, developers can easily execute them using both Echidna and Foundry's fuzzing tools. In instances where components require different versions of Solidity, these can be deployed into a Ganache instance with the help of Etheno. To generate intricate fuzzing inputs or to conduct differential fuzzing by comparing outputs with non-EVM executables, HEVM's FFI cheat code can be utilized effectively. Additionally, you can publish the results of your fuzzing experiments without concerns about licensing issues by modifying the shell script to retrieve specific files. If you do not plan to use shell commands from your Solidity contracts, it is advisable to disable FFI since it can be slow and should primarily serve as a workaround. This functionality proves beneficial when testing against complex implementations that are challenging to replicate in Solidity but are available in other programming languages. It is essential to review the commands being executed before running tests in projects that have FFI activated, ensuring a clear understanding of the operations taking place. Always prioritize clarity in your testing approach to maintain the integrity and effectiveness of your fuzzing efforts.
API Access
Has API
API Access
Has API
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
OWASP
Country
United States
Website
owasp.org/www-community/Fuzzing
Vendor Details
Company Name
patrickd
Website
github.com/patrickd-/solidity-fuzzing-boilerplate