Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

The RAPIDS software library suite, designed on CUDA-X AI, empowers users to run comprehensive data science and analytics workflows entirely on GPUs. It utilizes NVIDIA® CUDA® primitives for optimizing low-level computations while providing user-friendly Python interfaces that leverage GPU parallelism and high-speed memory access. Additionally, RAPIDS emphasizes essential data preparation processes tailored for analytics and data science, featuring a familiar DataFrame API that seamlessly integrates with various machine learning algorithms to enhance pipeline efficiency without incurring the usual serialization overhead. Moreover, it supports multi-node and multi-GPU setups, enabling significantly faster processing and training on considerably larger datasets. By incorporating RAPIDS, you can enhance your Python data science workflows with minimal code modifications and without the need to learn any new tools. This approach not only streamlines the model iteration process but also facilitates more frequent deployments, ultimately leading to improved machine learning model accuracy. As a result, RAPIDS significantly transforms the landscape of data science, making it more efficient and accessible.

Description

Scikit-learn offers a user-friendly and effective suite of tools for predictive data analysis, making it an indispensable resource for those in the field. This powerful, open-source machine learning library is built for the Python programming language and aims to simplify the process of data analysis and modeling. Drawing from established scientific libraries like NumPy, SciPy, and Matplotlib, Scikit-learn presents a diverse array of both supervised and unsupervised learning algorithms, positioning itself as a crucial asset for data scientists, machine learning developers, and researchers alike. Its structure is designed to be both consistent and adaptable, allowing users to mix and match different components to meet their unique requirements. This modularity empowers users to create intricate workflows, streamline repetitive processes, and effectively incorporate Scikit-learn into expansive machine learning projects. Furthermore, the library prioritizes interoperability, ensuring seamless compatibility with other Python libraries, which greatly enhances data processing capabilities and overall efficiency. As a result, Scikit-learn stands out as a go-to toolkit for anyone looking to delve into the world of machine learning.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Databricks Data Intelligence Platform
Intel Tiber AI Studio
Anaconda
Apache Spark
Capital One Spark Business Banking
DagsHub
Domino Enterprise MLOps Platform
Flower
Gradient
HEAVY.AI
HPE Ezmeral Data Fabric
IBM Cloud
Iguazio
Keepsake
Kinetica
MLJAR Studio
Matplotlib
NVIDIA FLARE
Train in Data

Integrations

Databricks Data Intelligence Platform
Intel Tiber AI Studio
Anaconda
Apache Spark
Capital One Spark Business Banking
DagsHub
Domino Enterprise MLOps Platform
Flower
Gradient
HEAVY.AI
HPE Ezmeral Data Fabric
IBM Cloud
Iguazio
Keepsake
Kinetica
MLJAR Studio
Matplotlib
NVIDIA FLARE
Train in Data

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

NVIDIA

Founded

1993

Country

United States

Website

developer.nvidia.com/rapids

Vendor Details

Company Name

scikit-learn

Country

United States

Website

scikit-learn.org/stable/

Product Features

Data Science

Access Control
Advanced Modeling
Audit Logs
Data Discovery
Data Ingestion
Data Preparation
Data Visualization
Model Deployment
Reports

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

Alternatives

ML.NET Reviews

ML.NET

Microsoft
Gensim Reviews

Gensim

Radim Řehůřek
MLlib Reviews

MLlib

Apache Software Foundation