Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

MLlib, the machine learning library of Apache Spark, is designed to be highly scalable and integrates effortlessly with Spark's various APIs, accommodating programming languages such as Java, Scala, Python, and R. It provides an extensive range of algorithms and utilities, which encompass classification, regression, clustering, collaborative filtering, and the capabilities to build machine learning pipelines. By harnessing Spark's iterative computation features, MLlib achieves performance improvements that can be as much as 100 times faster than conventional MapReduce methods. Furthermore, it is built to function in a variety of environments, whether on Hadoop, Apache Mesos, Kubernetes, standalone clusters, or within cloud infrastructures, while also being able to access multiple data sources, including HDFS, HBase, and local files. This versatility not only enhances its usability but also establishes MLlib as a powerful tool for executing scalable and efficient machine learning operations in the Apache Spark framework. The combination of speed, flexibility, and a rich set of features renders MLlib an essential resource for data scientists and engineers alike.

Description

The SensiML Analytics Toolkit enables the swift development of smart IoT sensor devices while simplifying the complexities of data science. It focuses on creating compact algorithms designed to run on small IoT endpoints instead of relying on cloud processing. By gathering precise, traceable, and version-controlled datasets, it enhances data integrity. The toolkit employs advanced AutoML code generation to facilitate the rapid creation of autonomous device code. Users can select their preferred interface and level of AI expertise while maintaining full oversight of all algorithm components. It also supports the development of edge tuning models that adapt behavior based on incoming data over time. The SensiML Analytics Toolkit automates every step necessary for crafting optimized AI recognition code for IoT sensors. Utilizing an expanding library of sophisticated machine learning and AI algorithms, the overall workflow produces code capable of learning from new data, whether during development or after deployment. Moreover, non-invasive applications for rapid disease screening that intelligently classify multiple bio-sensing inputs serve as essential tools for aiding healthcare decision-making processes. This capability positions the toolkit as an invaluable resource in both tech and healthcare sectors.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Amazon EC2
Apache Cassandra
Apache HBase
Apache Hive
Apache Mesos
Apache Spark
Hadoop
Java
Kubernetes
MapReduce
Python
R
Scala

Integrations

Amazon EC2
Apache Cassandra
Apache HBase
Apache Hive
Apache Mesos
Apache Spark
Hadoop
Java
Kubernetes
MapReduce
Python
R
Scala

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Apache Software Foundation

Founded

1995

Country

United States

Website

spark.apache.org/mllib/

Vendor Details

Company Name

SensiML

Founded

2017

Country

United States

Website

sensiml.com

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

Apache Spark Reviews

Apache Spark

Apache Software Foundation

Alternatives

Apache Mahout Reviews

Apache Mahout

Apache Software Foundation
ML.NET Reviews

ML.NET

Microsoft