Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
MLlib, the machine learning library of Apache Spark, is designed to be highly scalable and integrates effortlessly with Spark's various APIs, accommodating programming languages such as Java, Scala, Python, and R. It provides an extensive range of algorithms and utilities, which encompass classification, regression, clustering, collaborative filtering, and the capabilities to build machine learning pipelines. By harnessing Spark's iterative computation features, MLlib achieves performance improvements that can be as much as 100 times faster than conventional MapReduce methods. Furthermore, it is built to function in a variety of environments, whether on Hadoop, Apache Mesos, Kubernetes, standalone clusters, or within cloud infrastructures, while also being able to access multiple data sources, including HDFS, HBase, and local files. This versatility not only enhances its usability but also establishes MLlib as a powerful tool for executing scalable and efficient machine learning operations in the Apache Spark framework. The combination of speed, flexibility, and a rich set of features renders MLlib an essential resource for data scientists and engineers alike.
Description
Machine learning reveals concealed patterns and valuable insights within enterprise data, ultimately adding significant value to businesses. Oracle Machine Learning streamlines the process of creating and deploying machine learning models for data scientists by minimizing data movement, incorporating AutoML technology, and facilitating easier deployment. Productivity for data scientists and developers is enhanced while the learning curve is shortened through the use of user-friendly Apache Zeppelin notebook technology based on open source. These notebooks accommodate SQL, PL/SQL, Python, and markdown interpreters tailored for Oracle Autonomous Database, enabling users to utilize their preferred programming languages when building models. Additionally, a no-code interface that leverages AutoML on Autonomous Database enhances accessibility for both data scientists and non-expert users, allowing them to harness powerful in-database algorithms for tasks like classification and regression. Furthermore, data scientists benefit from seamless model deployment through the integrated Oracle Machine Learning AutoML User Interface, ensuring a smoother transition from model development to application. This comprehensive approach not only boosts efficiency but also democratizes machine learning capabilities across the organization.
API Access
Has API
API Access
Has API
Integrations
Apache Hive
Apache Spark
Amazon EC2
Apache Cassandra
Apache HBase
Apache Mesos
Hadoop
Impala
Java
Kinetica
Integrations
Apache Hive
Apache Spark
Amazon EC2
Apache Cassandra
Apache HBase
Apache Mesos
Hadoop
Impala
Java
Kinetica
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Apache Software Foundation
Founded
1995
Country
United States
Website
spark.apache.org/mllib/
Vendor Details
Company Name
Oracle
Founded
1977
Country
United States
Website
www.oracle.com/data-science/machine-learning/
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Product Features
Data Science
Access Control
Advanced Modeling
Audit Logs
Data Discovery
Data Ingestion
Data Preparation
Data Visualization
Model Deployment
Reports
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization