Best Oracle Machine Learning Alternatives in 2024
Find the top alternatives to Oracle Machine Learning currently available. Compare ratings, reviews, pricing, and features of Oracle Machine Learning alternatives in 2024. Slashdot lists the best Oracle Machine Learning alternatives on the market that offer competing products that are similar to Oracle Machine Learning. Sort through Oracle Machine Learning alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
620 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. -
2
AutoML Vision provides insights from images at the edge and cloud. Pre-trained Vision API models can also be used to understand text and detect emotion. Google Cloud offers two computer vision products, which use machine learning to help understand your images with an industry-leading prediction accuracy. Automate the creation of custom machine learning models. Upload images, train custom image models using AutoML Vision's intuitive graphical interface, optimize your models for accuracy and latency, and export them to your cloud application or to a range of devices at the edge. Google Cloud's Vision API provides powerful pre-trained machine-learning models via REST and RPC APIs. Assign labels to images and classify them quickly into millions of predefined groups. Detect faces and objects, read printed and handwritten texts, and add valuable metadata to your image catalog.
-
3
Dataiku DSS
Dataiku
1 RatingData analysts, engineers, scientists, and other scientists can be brought together. Automate self-service analytics and machine learning operations. Get results today, build for tomorrow. Dataiku DSS is a collaborative data science platform that allows data scientists, engineers, and data analysts to create, prototype, build, then deliver their data products more efficiently. Use notebooks (Python, R, Spark, Scala, Hive, etc.) You can also use a drag-and-drop visual interface or Python, R, Spark, Scala, Hive notebooks at every step of the predictive dataflow prototyping procedure - from wrangling to analysis and modeling. Visually profile the data at each stage of the analysis. Interactively explore your data and chart it using 25+ built in charts. Use 80+ built-in functions to prepare, enrich, blend, clean, and clean your data. Make use of Machine Learning technologies such as Scikit-Learn (MLlib), TensorFlow and Keras. In a visual UI. You can build and optimize models in Python or R, and integrate any external library of ML through code APIs. -
4
Oracle Data Science
Oracle
Data science platform that increases productivity and has unparalleled capabilities. Create and evaluate machine learning (ML), models of higher quality. Easy deployment of ML models can help increase business flexibility and enable enterprise-trusted data work faster. Cloud-based platforms can be used to uncover new business insights. Iterative processes are necessary to build a machine-learning model. This ebook will explain how machine learning models are constructed and break down the process. Use notebooks to build and test machine learning algorithms. AutoML will show you the results of data science. It is easier and faster to create high-quality models. Automated machine-learning capabilities quickly analyze the data and recommend the best data features and algorithms. Automated machine learning also tunes the model and explains its results. -
5
TrueFoundry
TrueFoundry
$5 per monthTrueFoundry provides data scientists and ML engineers with the fastest framework to support the post-model pipeline. With the best DevOps practices, we enable instant monitored endpoints to models in just 15 minutes! You can save, version, and monitor ML models and artifacts. With one command, you can create an endpoint for your ML Model. WebApps can be created without any frontend knowledge or exposure to other users as per your choice. Social swag! Our mission is to make machine learning fast and scalable, which will bring positive value! TrueFoundry is enabling this transformation by automating parts of the ML pipeline that are automated and empowering ML Developers with the ability to test and launch models quickly and with as much autonomy possible. Our inspiration comes from the products that Platform teams have created in top tech companies such as Facebook, Google, Netflix, and others. These products allow all teams to move faster and deploy and iterate independently. -
6
A fully-featured machine learning platform empowers enterprises to conduct real data science at scale and speed. You can spend less time managing infrastructure and tools so that you can concentrate on building machine learning applications to propel your business forward. Anaconda Enterprise removes the hassle from ML operations and puts open-source innovation at the fingertips. It provides the foundation for serious machine learning and data science production without locking you into any specific models, templates, workflows, or models. AE allows data scientists and software developers to work together to create, test, debug and deploy models using their preferred languages. AE gives developers and data scientists access to both notebooks as well as IDEs, allowing them to work more efficiently together. They can also choose between preconfigured projects and example projects. AE projects can be easily moved from one environment to the next by being automatically packaged.
-
7
Neural Designer is a data-science and machine learning platform that allows you to build, train, deploy, and maintain neural network models. This tool was created to allow innovative companies and research centres to focus on their applications, not on programming algorithms or programming techniques. Neural Designer does not require you to code or create block diagrams. Instead, the interface guides users through a series of clearly defined steps. Machine Learning can be applied in different industries. These are some examples of machine learning solutions: - In engineering: Performance optimization, quality improvement and fault detection - In banking, insurance: churn prevention and customer targeting. - In healthcare: medical diagnosis, prognosis and activity recognition, microarray analysis and drug design. Neural Designer's strength is its ability to intuitively build predictive models and perform complex operations.
-
8
RapidMiner
Altair
FreeRapidMiner is redefining enterprise AI so anyone can positively shape the future. RapidMiner empowers data-loving people from all levels to quickly create and implement AI solutions that drive immediate business impact. Our platform unites data prep, machine-learning, and model operations. This provides a user experience that is both rich in data science and simplified for all others. Customers are guaranteed success with our Center of Excellence methodology, RapidMiner Academy and no matter what level of experience or resources they have. -
9
Comet
Comet
$179 per user per monthManage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders. -
10
Metacoder
Wazoo Mobile Technologies LLC
$89 per user/month Metacoder makes data processing faster and more efficient. Metacoder provides data analysts with the flexibility and tools they need to make data analysis easier. Metacoder automates data preparation steps like cleaning, reducing the time it takes to inspect your data before you can get up and running. It is a good company when compared to other companies. Metacoder is cheaper than similar companies and our management is actively developing based upon our valued customers' feedback. Metacoder is primarily used to support predictive analytics professionals in their work. We offer interfaces for database integrations, data cleaning, preprocessing, modeling, and display/interpretation of results. We make it easy to manage the machine learning pipeline and help organizations share their work. Soon, we will offer code-free solutions for image, audio and video as well as biomedical data. -
11
Zepl
Zepl
All work can be synced, searched and managed across your data science team. Zepl's powerful search allows you to discover and reuse models, code, and other data. Zepl's enterprise collaboration platform allows you to query data from Snowflake or Athena and then build your models in Python. For enhanced interactions with your data, use dynamic forms and pivoting. Zepl creates new containers every time you open your notebook. This ensures that you have the same image each time your models are run. You can invite your team members to join you in a shared space, and they will be able to work together in real-time. Or they can simply leave comments on a notebook. You can share your work with fine-grained access controls. You can allow others to read, edit, run, and share your work. This will facilitate collaboration and distribution. All notebooks can be saved and versioned automatically. An easy-to-use interface allows you to name, manage, roll back, and roll back all versions. You can also export seamlessly into Github. -
12
cnvrg.io
cnvrg.io
An end-to-end solution gives you all the tools your data science team needs to scale your machine learning development, from research to production. cnvrg.io, the world's leading data science platform for MLOps (model management) is a leader in creating cutting-edge machine-learning development solutions that allow you to build high-impact models in half the time. In a collaborative and clear machine learning management environment, bridge science and engineering teams. Use interactive workspaces, dashboards and model repositories to communicate and reproduce results. You should be less concerned about technical complexity and more focused on creating high-impact ML models. The Cnvrg.io container based infrastructure simplifies engineering heavy tasks such as tracking, monitoring and configuration, compute resource management, server infrastructure, feature extraction, model deployment, and serving infrastructure. -
13
Obviously AI
Obviously AI
$75 per monthAll the steps involved in building machine learning algorithms and predicting results, all in one click. Data Dialog allows you to easily shape your data without having to wrangle your files. Your prediction reports can be shared with your team members or made public. Let anyone make predictions on your model. Our low-code API allows you to integrate dynamic ML predictions directly into your app. Real-time prediction of willingness to pay, score leads, and many other things. AI gives you access to the most advanced algorithms in the world, without compromising on performance. Forecast revenue, optimize supply chain, personalize your marketing. Now you can see what the next steps are. In minutes, you can add a CSV file or integrate with your favorite data sources. Select your prediction column from the dropdown and we'll automatically build the AI. Visualize the top drivers, predicted results, and simulate "what-if?" scenarios. -
14
You can build, run, and manage AI models and optimize decisions across any cloud. IBM Watson Studio allows you to deploy AI anywhere with IBM Cloud Pak®, the IBM data and AI platform. Open, flexible, multicloud architecture allows you to unite teams, simplify the AI lifecycle management, and accelerate time-to-value. ModelOps pipelines automate the AI lifecycle. AutoAI accelerates data science development. AutoAI allows you to create and programmatically build models. One-click integration allows you to deploy and run models. Promoting AI governance through fair and explicable AI. Optimizing decisions can improve business results. Open source frameworks such as PyTorch and TensorFlow can be used, as well as scikit-learn. You can combine the development tools, including popular IDEs and Jupyter notebooks. JupterLab and CLIs. This includes languages like Python, R, and Scala. IBM Watson Studio automates the management of the AI lifecycle to help you build and scale AI with trust.
-
15
Deepnote
Deepnote
FreeDeepnote is building the best data science notebook for teams. Connect your data, explore and analyze it within the notebook with real-time collaboration and versioning. Share links to your projects with other analysts and data scientists on your team, or present your polished, published notebooks to end users and stakeholders. All of this is done through a powerful, browser-based UI that runs in the cloud. -
16
StreamFlux
Fractal
Data is essential when it comes to constructing, streamlining and growing your company. Unfortunately, it can be difficult to get the most out of data. Many organizations face incompatibilities, slow results, poor access to data and spiraling costs. Leaders who can transform raw data into real results are the ones who will succeed in today's competitive landscape. This is possible by empowering everyone in your company to be able analyze, build, and collaborate on machine learning and AI solutions. Streamflux is a one stop shop for all your data analytics and AI needs. Our self-service platform gives you the freedom to create end-to-end data solutions. It uses models to answer complex questions, and evaluates user behavior. You can transform raw data into real business impact in days instead of months, whether you are generating recommendations or predicting customer turnover and future revenue. -
17
Kraken
Big Squid
$100 per monthKraken is suitable for all data scientists and analysts. It is designed to be easy-to-use and no-code automated machine-learning platform. The Kraken no code automated machine learning platform (AutoML), simplifies and automates data science tasks such as data prep, data cleaning and algorithm selection. It also allows for model training and deployment. Kraken was designed with engineers and analysts in mind. If you've done data analysis before, you're ready! Kraken's intuitive interface and integrated SONAR(c), training make it easy for citizens to become data scientists. Data scientists can work more efficiently and faster with advanced features. You can use Excel or flat files for daily reporting, or just ad-hoc analysis. With Kraken's drag-and-drop CSV upload feature and the Amazon S3 connector, you can quickly start building models. Kraken's Data Connectors allow you to connect with your favorite data warehouse, business intelligence tool, or cloud storage. -
18
H2O.ai
H2O.ai
H2O.ai, the open-source leader in AI and machinelearning, has a mission to democratize AI. Our enterprise-ready platforms, which are industry-leading, are used by thousands of data scientists from over 20,000 organizations worldwide. Every company can become an AI company in financial, insurance, healthcare and retail. We also empower them to deliver real value and transform businesses. -
19
Domino Enterprise MLOps Platform
Domino Data Lab
1 RatingThe Domino Enterprise MLOps Platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. By automating time-consuming and tedious DevOps tasks, data scientists can focus on the tasks at hand. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record has a powerful reproducibility engine, search and knowledge management, and integrated project management. Teams can easily find, reuse, reproduce, and build on any data science work to amplify innovation. -
20
Google Cloud AutoML
Google
Cloud AutoML is a set of machine learning products that allows developers with limited machine-learning expertise to create high-quality models tailored to their business needs. It uses Google's state of the art neural architecture and transfer learning search technology. Cloud AutoML uses more than 10 years' of Google Research technology to help machine learning models achieve faster performance, better predictions, and more accurate predictions. Cloud AutoML's graphical user interface makes it easy to build, evaluate, improve, deploy, and test models based upon your data. Only a few clicks away is your custom machine learning model. Google's human-labeling service can assign a team to clean and annotate your labels. This will ensure that your models are trained with high-quality data. -
21
Key Ward
Key Ward
€9,000 per yearEasily extract, transform, manage & process CAD data, FE data, CFD and test results. Create automatic data pipelines to support machine learning, deep learning, and ROM. Data science barriers can be removed without coding. Key Ward's platform, the first engineering no-code end-to-end solution, redefines how engineers work with their data. Our software allows engineers to handle multi-source data with ease, extract direct value using our built-in advanced analytical tools, and build custom machine and deep learning model with just a few clicks. Automatically centralize, update and extract your multi-source data, then sort, clean and prepare it for analysis, machine and/or deep learning. Use our advanced analytics tools to correlate, identify patterns, and find dependencies in your experimental & simulator data. -
22
IBM Cloud Pak for Data
IBM
$699 per monthUnutilized data is the biggest obstacle to scaling AI-powered decision making. IBM Cloud Pak®, for Data is a unified platform that provides a data fabric to connect, access and move siloed data across multiple clouds or on premises. Automate policy enforcement and discovery to simplify access to data. A modern cloud data warehouse integrates to accelerate insights. All data can be protected with privacy and usage policy enforcement. To gain faster insights, use a modern, high-performance cloud storage data warehouse. Data scientists, analysts, and developers can use a single platform to create, deploy, and manage trusted AI models in any cloud. -
23
OpenText Magellan
OpenText
Machine Learning and Predictive Analytics Platform. Advanced artificial intelligence is a pre-built platform for machine learning and big-data analytics that can enhance data-driven decision making. OpenText Magellan makes predictive analytics easy to use and provides flexible data visualizations that maximize business intelligence. Artificial intelligence software reduces the need to manually process large amounts of data. It presents valuable business insights in a manner that is easily accessible and relevant to the organization's most important objectives. Organizations can enhance business processes by using a curated combination of capabilities such as predictive modeling, data discovery tools and data mining techniques. IoT data analytics is another way to use data to improve decision-making based on real business intelligence. -
24
Zerve AI
Zerve AI
With a fully automated cloud infrastructure, experts can explore data and write stable codes at the same time. Zerve’s data science environment gives data scientists and ML teams a unified workspace to explore, collaborate and build data science & AI project like never before. Zerve provides true language interoperability. Users can use Python, R SQL or Markdown in the same canvas and connect these code blocks. Zerve offers unlimited parallelization, allowing for code blocks and containers to run in parallel at any stage of development. Analysis artifacts can be automatically serialized, stored and preserved. This allows you to change a step without having to rerun previous steps. Selecting compute resources and memory in a fine-grained manner for complex data transformation. -
25
PredictSense
Winjit
PredictSense is an AI-powered machine learning platform that uses AutoML to power its end-to-end Machine Learning platform. Accelerating machine intelligence will fuel the technological revolution of tomorrow. AI is key to unlocking the value of enterprise data investments. PredictSense allows businesses to quickly create AI-driven advanced analytical solutions that can help them monetize their technology investments and critical data infrastructure. Data science and business teams can quickly develop and deploy robust technology solutions at scale. Integrate AI into your existing product ecosystem and quickly track GTM for new AI solution. AutoML's complex ML models allow you to save significant time, money and effort. -
26
Alteryx
Alteryx
Alteryx AI Platform will help you enter a new age of analytics. Empower your organization through automated data preparation, AI powered analytics, and accessible machine learning - all with embedded governance. Welcome to a future of data-driven decision making for every user, team and step. Empower your team with an intuitive, easy-to-use user experience that allows everyone to create analytical solutions that improve productivity and efficiency. Create an analytics culture using an end-toend cloud analytics platform. Data can be transformed into insights through self-service data preparation, machine learning and AI generated insights. Security standards and certifications are the best way to reduce risk and ensure that your data is protected. Open API standards allow you to connect with your data and applications. -
27
NVIDIA RAPIDS
NVIDIA
The RAPIDS software library, which is built on CUDAX AI, allows you to run end-to-end data science pipelines and analytics entirely on GPUs. It uses NVIDIA®, CUDA®, primitives for low level compute optimization. However, it exposes GPU parallelism through Python interfaces and high-bandwidth memories speed through user-friendly Python interfaces. RAPIDS also focuses its attention on data preparation tasks that are common for data science and analytics. This includes a familiar DataFrame API, which integrates with a variety machine learning algorithms for pipeline accelerations without having to pay serialization fees. RAPIDS supports multi-node, multiple-GPU deployments. This allows for greatly accelerated processing and training with larger datasets. You can accelerate your Python data science toolchain by making minimal code changes and learning no new tools. Machine learning models can be improved by being more accurate and deploying them faster. -
28
Vectice
Vectice
All enterprise's AI/ML efforts can have a consistent and positive impact. Data scientists deserve a solution that makes their experiments reproducible, each asset discoverable, and simplifies knowledge transfer. Managers deserve a dedicated data science solution. To automate reporting, secure knowledge, and simplify reviews and other processes. Vectice's mission is to revolutionize how data science teams collaborate and work together. All organizations should see consistent and positive AI/ML impacts. Vectice is the first automated knowledge system that is data science-aware, actionable, and compatible with the tools used by data scientists. Vectice automatically captures all assets created by AI/ML teams, such as data, code, notebooks and models, or runs. It then automatically generates documentation, from business requirements to production deployments. -
29
Analance
Ducen
Combine Data Science, Business Intelligence and Data Management Capabilities into One Integrated, Self-Serve Platform. Analance is an end-to-end platform with robust and salable features that combines Data Science and Advanced Analytics, Business Intelligence and Data Management into a single integrated platform. It provides core analytical processing power to ensure that data insights are easily accessible to all, performance remains consistent over time, and business objectives can be met within a single platform. Analance focuses on making quality data into accurate predictions. It provides both citizen data scientists and data scientists with pre-built algorithms as well as an environment for custom programming. Company - Overview Ducen IT provides advanced analytics, business intelligence, and data management to Fortune 1000 companies through its unique data science platform Analance. -
30
Altair Knowledge Studio
Altair
Altair is used by data scientists and business analysts to extract actionable insights from their data. Knowledge Studio is a market-leading, easy-to-use machine learning and predictive analytics tool that quickly visualizes data and generates explainable results. It doesn't require a single line code. Knowledge Studio, a recognized leader in analytics, brings transparency and automation into machine learning with features like AutoML and explainable AI. You have complete control over how models are built and configured. Knowledge Studio is designed for collaboration across the business. Complex projects can be completed by data scientists and business analysts in minutes, hours, or even days. Results are easy to understand and explain. Data scientists can quickly create machine learning models using less time than coding or using other tools because of the ease of use and automation of modeling steps. -
31
IBM SPSS Modeler
IBM
IBM SPSS Modeler, a leading visual data-science and machine-learning (ML) solution, is designed to help enterprises accelerate their time to value through the automation of operational tasks by data scientists. It is used by organizations around the world for data preparation, discovery, predictive analytics and model management and deployment. ML is also used to monetize data assets. IBM SPSS Modeler transforms data in the best possible format for accurate predictive modeling. You can now analyze data in just a few clicks, identify fixes, screen fields out and derive new characteristics. IBM SPSS Modeler uses its powerful graphics engine to help you bring your insights to life. The smart chart recommender will select the best chart from dozens of options to share your insights. -
32
Metaflow
Metaflow
Data scientists are able to build, improve, or operate end-to–end workflows independently. This allows them to deliver data science projects that are successful. Metaflow can be used with your favorite data science libraries such as SciKit Learn or Tensorflow. You can write your models in idiomatic Python codes with little to no learning. Metaflow also supports R language. Metaflow allows you to design your workflow, scale it, and then deploy it to production. It automatically tracks and versions all your data and experiments. It allows you to easily inspect the results in notebooks. Metaflow comes pre-installed with the tutorials so it's easy to get started. Metaflow allows you to make duplicates of all tutorials in your current directory by using the command line interface. -
33
Access, explore, and prepare data while discovering new patterns and trends. SAS Visual Data Science allows you to create and share interactive visualizations and reports using a single interface. It uses machine learning, text analysis, and econometrics to improve forecasting and optimization. Additionally, it registers SAS and open source models within projects and as standalone models. Visualize your data and find relevant relationships. You can create and share interactive dashboards and reports, and use self service analytics to quickly assess possible outcomes for better, data-driven decisions. This solution runs in SAS®, Viya®. It allows you to explore data and create or adjust predictive analytical models. Analysts, statisticians, data scientists, and analysts can work together to refine and refine models for each group or segment, allowing them to make informed decisions.
-
34
Darwin
SparkCognition
$4000Darwin is an automated machine-learning product that allows your data science and business analysis teams to quickly move from data to meaningful results. Darwin assists organizations in scaling the adoption of data science across their teams and the implementation machine learning applications across operations to become data-driven enterprises. -
35
DataRobot
DataRobot
AI Cloud is a new approach that addresses the challenges and opportunities presented by AI today. A single system of records that accelerates the delivery of AI to production in every organization. All users can collaborate in a single environment that optimizes the entire AI lifecycle. The AI Catalog facilitates seamlessly finding, sharing and tagging data. This helps to increase collaboration and speed up time to production. The catalog makes it easy to find the data you need to solve a business problem. It also ensures security, compliance, consistency, and consistency. Contact Support if your database is protected by a network rule that allows connections only from certain IP addresses. An administrator will need to add addresses to your whitelist. -
36
SensiML Analytics Studio
SensiML
Sensiml analytics toolkit. Create smart iot sensor devices rapidly reduce data science complexity. Compact algorithms can be created that run on small IoT devices and not in the cloud. Collect precise, traceable, and version-controlled datasets. Advanced AutoML code-gen is used to quickly create autonomous working device code. You can choose your interface and level of AI expertise. All aspects of your algorithm will remain accessible to you. Edge tuning models can be built that adapt to the data they receive. SensiML Analytics Toolkit suite automates every step of the process to create optimized AI IoT sensor recognition codes. The workflow employs a growing number of advanced ML algorithms and AI algorithms to generate code that can learn new data, either in the development phase or once it is deployed. The key tools for healthcare decision support are non-invasive, rapid screening applications that use intelligent classification of one or several bio-sensing inputs. -
37
IBM Watson Machine Learning
IBM
$0.575 per hourIBM Watson Machine Learning, a full-service IBM Cloud offering, makes it easy for data scientists and developers to work together to integrate predictive capabilities into their applications. The Machine Learning service provides a set REST APIs that can be called from any programming language. This allows you to create applications that make better decisions, solve difficult problems, and improve user outcomes. Machine learning models management (continuous-learning system) and deployment (online batch, streaming, or online) are available. You can choose from any of the widely supported machine-learning frameworks: TensorFlow and Keras, Caffe or PyTorch. Spark MLlib, scikit Learn, xgboost, SPSS, Spark MLlib, Keras, Caffe and Keras. To manage your artifacts, you can use the Python client and command-line interface. The Watson Machine Learning REST API allows you to extend your application with artificial intelligence. -
38
MindsDB
MindsDB
Open-Source AI layer for databases. Machine Learning capabilities can be integrated directly into your data domain to increase efficiency and productivity. MindsDB makes it easy to create, train, and then test ML models. Then publish them as virtual AI tables into databases. Integrate seamlessly with all major databases. SQL queries can be used to manipulate ML models. You can increase model training speed using GPU without affecting the performance of your database. Learn how the ML model arrived at its conclusions and what factors affect prediction confidence. Visual tools that allow you to analyze model performance. SQL and Python queries that return explanation insights in a single code. You can use What-if analysis to determine confidence based upon different inputs. Automate the process for applying machine learning using the state-of the-art Lightwood AutoML library. Machine Learning can be used to create custom solutions in your preferred programming language. -
39
Jupyter Notebook
Project Jupyter
3 RatingsOpen-source web application, the Jupyter Notebook, allows you to create and share documents with live code, equations, and visualizations. Data cleaning and transformation, numerical modeling, statistical modeling and data visualization are just a few of the many uses. -
40
Einblick
Einblick
$9 per monthEinblick is the fastest and most collaborative method to analyze data, make predictions, and then deploy data apps. Our canvases dramatically change the data science workflows. They make it easier to clean, manipulate, and explore data in a new interface. Our platform is the only one that allows you to collaborate with your entire team in real-time. Let's make decision-making a team activity. Don't waste your time tuning models manually. AutoML's goal is to help you make clear predictions and identify key drivers quickly. Einblick combines common analytics functionality into simple-to-use operators that allow you to abstract repetitive tasks and get answers faster. Connect your data source to Snowflake, S3 buckets, or CSV files and you'll be able to get answers in minutes. You can create a list of customers that have been churned or are currently churned, and share everything you know about them. Find out the key factors that caused churn and how at-risk each customer is. -
41
Predictive modeling with Machine Learning and Explainable Ai. FICO®, Analytics Workbench™, is a comprehensive suite of state-of the-art analytic authoring software that empowers companies to make better business decisions throughout the customer lifecycle. Data scientists can use it to build superior decisioning abilities using a variety of predictive data modeling tools, including the most recent machine learning (ML), and explainable AI (xAI) methods. FICO's innovative intellectual property enables us to combine the best of open-source data science and machine learning to provide world-class analytical capabilities to find, combine, and operationalize data predictive signals. Analytics Workbench is built upon the FICO®, leading platform that allows for new predictive models and strategies to easily be put into production.
-
42
Neuton AutoML
Neuton.AI
$0Neuton.AI, an automated solution, empowering users to build accurate predictive models and make smart predictions with: Zero code solution Zero need for technical skills Zero need for data science knowledge -
43
NVIDIA Merlin
NVIDIA
NVIDIA Merlin enables data scientists, machine-learning engineers, and researchers, to build high-performance recommenders at scale. Merlin includes libraries, methods and tools to streamline the building and deployment of recommenders. These include addressing common challenges in preprocessing, feature engineering and training. Merlin components and capabilities have been optimized to support retrieval, scoring, filtering and ordering of hundreds terabytes data. All of this is accessible via easy-to-use interfaces. Merlin can help you make better predictions, increase click-through rates and deploy faster to production. NVIDIA Merlin is part of NVIDIA AI and advances our commitment to support innovative practitioners doing their best. NVIDIA Merlin is designed as an end-toend solution that can be integrated into existing recommender workflows utilizing data science and machine learning. -
44
Analytically driven decision flows can be created, embedded and managed at scale in batch or real-time. SAS Data Science Programming allows data scientists who prefer to work only in programmatic mode to access SAS analytical capabilities at every stage of the analytics lifecycle, including data discovery and deployment. Visualize and discover relationships in your data. You can create and share interactive dashboards and reports, and use self service analytics to quickly assess possible outcomes to make data-driven, smarter decisions. This solution runs in SAS®, Viya®. It allows you to explore data and create or adjust predictive analytical models. Analysts, statisticians, data scientists, and analysts can work together to refine and refine models for each group or segment, allowing them to make informed decisions. A comprehensive visual interface allows you to solve complex analytical problems. It handles all aspects of the analytics lifecycle.
-
45
Outerbounds
Outerbounds
With open-source Metaflow, you can design and develop data-intensive projects. You can scale them up and deploy them on the fully managed Outerbounds platform. All your data science and ML projects can be managed from one platform. Access data securely from existing data warehouses. A cluster that is optimized for cost and scale can be used to compute. 24/7 managed orchestration of production workflows. Results can be used to power any application. Your engineers will give your data scientists superpowers. Outerbounds Platform enables data scientists to quickly develop, experiment at scale, then deploy to production with confidence. All within the boundaries of your engineers' policies and processes, all running on your cloud account, fully supported by us. Security is part of our DNA, not at its perimeter. Through multiple layers of security, the platform adapts to your policies. Centralized authentication, a strict permission limit, and granular task execution role. -
46
IBM Analytics for Apache Spark allows data scientists to ask more difficult questions and deliver business value quicker with a flexible, integrated Spark service. It's a simple-to-use, managed service that is always on and doesn't require any long-term commitment. You can start exploring immediately. You can access the power of Apache Spark without locking yourself in, thanks to IBM's open-source commitment as well as decades of enterprise experience. With Notebooks as a connector, coding and analytics are faster and easier with managed Spark services. This allows you to spend more time on innovation and delivery. You can access the power of machine learning libraries through managed Apache Spark services without having to manage a Sparkcluster by yourself.
-
47
Wallaroo.AI
Wallaroo.AI
Wallaroo is the last mile of your machine-learning journey. It helps you integrate ML into your production environment and improve your bottom line. Wallaroo was designed from the ground up to make it easy to deploy and manage ML production-wide, unlike Apache Spark or heavy-weight containers. ML that costs up to 80% less and can scale to more data, more complex models, and more models at a fraction of the cost. Wallaroo was designed to allow data scientists to quickly deploy their ML models against live data. This can be used for testing, staging, and prod environments. Wallaroo supports the most extensive range of machine learning training frameworks. The platform will take care of deployment and inference speed and scale, so you can focus on building and iterating your models. -
48
Profet AI
Profet AI
Profet AI’s No-Code AutoML Platform, which is end-to-end and can be used by manufacturers as their Virtual Data Scientist, provides a complete solution for data analysis. It allows IT/domain experts to quickly build high-quality predictive models and deploy Industrial AI apps to solve their daily production and digitalization challenges. Profet AI AutoML Platform has been widely adopted by leading companies in the world across industries. These include leading EMS, Semi OSAT, PCB design houses, IC design houses, display panel and material solution providers. We use the successful cases of industry leading companies to benefit our customers and implement AI within a week. -
49
To identify the best actions, you need to build and solve complex optimization models. IBM®, ILOG®, CPLEX®, Optimization Studio uses decision optimization technology. It optimizes your business decisions, creates and deploys optimization models quickly, and creates real-world applications that can significantly increase business outcomes. How does it work? How? It combines a fully-featured integrated development environment that supports Optimization Programming Language, (OPL), and the high-performance CPLEX/CP Optimizer solvers. It's data science for your decisions. IBM Decision Optimization is also available in Cloud Pak for Data. This allows you to combine optimization and machine-learning within a unified environment, IBM Watson® Studio that enables AI infused optimization modeling capabilities.
-
50
dotData
dotData
DotData allows your business to concentrate on the results of your AI/ML applications and not the hassles of the data science process. Automate full-cycle AI & ML pipeline deployment in minutes. Continuous deployment allows you to update your data in real-time. Feature engineering automation reduces the time it takes to complete data science projects. Data science automation automates the discovery of unknowns in your business. Data science automation is a labor-intensive and cumbersome process that uses data science to create and deploy machine learning and AI models. Automate repetitive and time-consuming tasks that are the banes of data science work. This will reduce the development times for AI from months to days.