Best Oracle Machine Learning Alternatives in 2025

Find the top alternatives to Oracle Machine Learning currently available. Compare ratings, reviews, pricing, and features of Oracle Machine Learning alternatives in 2025. Slashdot lists the best Oracle Machine Learning alternatives on the market that offer competing products that are similar to Oracle Machine Learning. Sort through Oracle Machine Learning alternatives below to make the best choice for your needs

  • 1
    Oracle Data Science Reviews
    A data science platform designed to enhance productivity offers unmatched features that facilitate the development and assessment of superior machine learning (ML) models. By leveraging enterprise-trusted data swiftly, businesses can achieve greater flexibility and meet their data-driven goals through simpler deployment of ML models. Cloud-based solutions enable organizations to uncover valuable business insights efficiently. The journey of constructing a machine learning model is inherently iterative, and this ebook meticulously outlines the stages involved in its creation. Readers can engage with notebooks to either build or evaluate various machine learning algorithms. Experimenting with AutoML can yield impressive data science outcomes, allowing users to create high-quality models with greater speed and ease. Moreover, automated machine learning processes quickly analyze datasets, recommending the most effective data features and algorithms while also fine-tuning models and clarifying their results. This comprehensive approach ensures that businesses can harness the full potential of their data, driving innovation and informed decision-making.
  • 2
    Google Cloud Vision AI Reviews
    Harness the power of AutoML Vision or leverage pre-trained Vision API models to extract meaningful insights from images stored in the cloud or at the network's edge, allowing for emotion detection, text interpretation, and much more. Google Cloud presents two advanced computer vision solutions that utilize machine learning to provide top-notch prediction accuracy for image analysis. You can streamline the creation of bespoke machine learning models by simply uploading your images, using AutoML Vision's intuitive graphical interface to train these models, and fine-tuning them for optimal performance in terms of accuracy, latency, and size. Once perfected, these models can be seamlessly exported for use in cloud applications or on various edge devices. Additionally, Google Cloud’s Vision API grants access to robust pre-trained machine learning models via REST and RPC APIs. You can easily assign labels to images, categorize them into millions of pre-existing classifications, identify objects and faces, interpret both printed and handwritten text, and enhance your image catalog with rich metadata for deeper insights. This combination of tools not only simplifies the image analysis process but also empowers businesses to make data-driven decisions more effectively.
  • 3
    Kraken Reviews

    Kraken

    Big Squid

    $100 per month
    Kraken caters to a wide range of users, from analysts to data scientists, by providing a user-friendly, no-code automated machine learning platform. It is designed to streamline and automate various data science processes, including data preparation, cleaning, algorithm selection, model training, and deployment. With a focus on making these tasks accessible, Kraken is particularly beneficial for analysts and engineers who may have some experience in data analysis. The platform’s intuitive, no-code interface and integrated SONAR© training empower users to evolve into citizen data scientists effortlessly. For data scientists, advanced functionalities enhance productivity and efficiency. Whether your routine involves using Excel or flat files for reporting or conducting ad-hoc analysis, Kraken simplifies the model-building process with features like drag-and-drop CSV uploads and an Amazon S3 connector. Additionally, the Data Connectors in Kraken enable seamless integration with various data warehouses, business intelligence tools, and cloud storage solutions, ensuring that users can work with their preferred data sources effortlessly. This versatility makes Kraken an indispensable tool for anyone looking to leverage machine learning without requiring extensive coding knowledge.
  • 4
    Oracle Data Miner Reviews
    Oracle Data Miner empowers data scientists, "citizen data scientists," along with business and data analysts to interact seamlessly with data within the database through an intuitive graphical interface that utilizes a "drag and drop" workflow editor. As an extension of Oracle SQL Developer, Oracle Data Miner (ODMr) effectively captures and visually documents the analytical processes users follow while delving into data and crafting machine learning techniques. The workflows created with ODMr are instrumental for not only re-executing analytical methods but also for facilitating knowledge sharing among team members. Moreover, ODMr efficiently produces SQL and PL/SQL scripts while providing a workflow API that streamlines the deployment of models across the organization. By minimizing data movement, ensuring scalability for big data, maintaining security, and speeding up the transition from model development to deployment, organizations can effectively harness their data assets. This enhanced approach ultimately leads to more informed decision-making and improved business outcomes.
  • 5
    Google Cloud AutoML Reviews
    Cloud AutoML represents a collection of machine learning tools that allow developers with minimal expertise in the field to create tailored models that meet their specific business requirements. This technology harnesses Google's advanced transfer learning and neural architecture search methodologies. By utilizing over a decade of exclusive research advancements from Google, Cloud AutoML enables your machine learning models to achieve enhanced accuracy and quicker performance. With its user-friendly graphical interface, you can effortlessly train, assess, refine, and launch models using your own data. In just a few minutes, you can develop a personalized machine learning model. Additionally, Google’s human labeling service offers a dedicated team to assist in annotating or refining your data labels, ensuring that your models are trained on top-notch data for optimal results. This combination of advanced technology and user support makes Cloud AutoML an accessible option for businesses looking to leverage machine learning.
  • 6
    Altair Knowledge Studio Reviews
    Altair is utilized by data scientists and business analysts to extract actionable insights from their datasets. Knowledge Studio offers a leading, user-friendly machine learning and predictive analytics platform that swiftly visualizes data while providing clear, explainable outcomes without necessitating any coding. As a prominent figure in analytics, Knowledge Studio enhances transparency and automates machine learning processes through features like AutoML and explainable AI, all while allowing users the flexibility to configure and fine-tune their models, thus maintaining control over the building process. The platform fosters collaboration throughout the organization, enabling data professionals to tackle intricate projects in a matter of minutes or hours rather than dragging them out for weeks or months. The results produced are straightforward and easily articulated, allowing stakeholders to grasp the findings effortlessly. Furthermore, the combination of user-friendliness and the automation of various modeling steps empowers data scientists to create an increased number of machine learning models more swiftly than with traditional coding methods or other available tools. This efficiency not only shortens project timelines but also enhances overall productivity across teams.
  • 7
    Anaconda Reviews
    Top Pick
    Empowering businesses to engage in genuine data science quickly and effectively through a comprehensive machine learning platform is crucial. By minimizing the time spent managing tools and infrastructure, organizations can concentrate on developing machine learning applications that drive growth. Anaconda Enterprise alleviates the challenges associated with ML operations, grants access to open-source innovations, and lays the groundwork for robust data science and machine learning operations without confining users to specific models, templates, or workflows. Software developers and data scientists can seamlessly collaborate within AE to create, test, debug, and deploy models using their chosen programming languages and tools. Additionally, AE facilitates access to both notebooks and integrated development environments (IDEs), enhancing collaborative efficiency. Users can also select from a variety of example projects or utilize preconfigured projects tailored to their needs. Furthermore, AE automatically containerizes projects, ensuring they can be effortlessly transitioned between various environments as required. This flexibility ultimately empowers teams to innovate and adapt to changing business demands more readily.
  • 8
    Decanter AI Reviews
    Decanter AI is a no-code AI tool that helps data scientists, domain specialists, and business stakeholders design and deploy AI solutions in a seamless manner. Data is at the core of all business growth. But it also presents new challenges. Decanter AI's advanced AI technologies make digital transformation as simple as eating a bagel. Decanter AI uses automated Machine Learning (AutoML), an automation of the machine-learning process, to assist enterprises with AI driven decision making. It also generates business value using enterprise data. Decanter AI provides enterprises with world-class technologies for machine learning through an intuitive interface. It allows enterprises to solve business problems using an AI-driven method by rapidly building, test and deploying highly accurate models.
  • 9
    Auger.AI Reviews

    Auger.AI

    Auger.AI

    $200 per month
    Auger.AI delivers the most comprehensive solution for maintaining the accuracy of machine learning models. Our MLRAM tool (Machine Learning Review and Monitoring) guarantees that your models maintain their accuracy over time. It even assesses the return on investment for your predictive models! MLRAM is compatible with any machine learning technology stack. If your ML system lifecycle lacks ongoing measurement of model accuracy, you could be forfeiting profits due to erroneous predictions. Additionally, frequently retraining models can be costly and may not resolve issues caused by concept drift. MLRAM offers significant benefits for both data scientists and business professionals, featuring tools such as accuracy visualization graphs, performance and accuracy notifications, anomaly detection, and automated optimized retraining. Integrating your predictive model with MLRAM requires just a single line of code, making the process seamless. We also provide a complimentary one-month trial of MLRAM for eligible users. Ultimately, Auger.AI stands out as the most precise AutoML platform available, ensuring that your machine learning initiatives are both effective and efficient.
  • 10
    Vectice Reviews
    Empowering all AI and machine learning initiatives within enterprises to yield reliable and beneficial outcomes is crucial. Data scientists require a platform that guarantees reproducibility for their experiments, ensures discoverability of every asset, and streamlines the transfer of knowledge. Meanwhile, managers need a specialized data science solution to safeguard knowledge, automate reporting tasks, and simplify review processes. Vectice aims to transform the operational dynamics of data science teams and enhance their collaboration. The ultimate objective is to foster a consistent and advantageous impact of AI and ML across various organizations. Vectice is introducing the first automated knowledge solution that is not only cognizant of data science but also actionable and seamlessly integrates with the tools utilized by data scientists. The platform automatically captures all assets generated by AI and ML teams, including datasets, code, notebooks, models, and runs, while also creating comprehensive documentation that spans from business requirements to production deployments, ensuring that every aspect of the workflow is covered efficiently. This innovative approach allows organizations to maximize their data science potential and drive meaningful results.
  • 11
    Dataiku Reviews
    Dataiku serves as a sophisticated platform for data science and machine learning, aimed at facilitating teams in the construction, deployment, and management of AI and analytics projects on a large scale. It enables a diverse range of users, including data scientists and business analysts, to work together in developing data pipelines, crafting machine learning models, and preparing data through various visual and coding interfaces. Supporting the complete AI lifecycle, Dataiku provides essential tools for data preparation, model training, deployment, and ongoing monitoring of projects. Additionally, the platform incorporates integrations that enhance its capabilities, such as generative AI, thereby allowing organizations to innovate and implement AI solutions across various sectors. This adaptability positions Dataiku as a valuable asset for teams looking to harness the power of AI effectively.
  • 12
    Google Cloud AutoML Translation Reviews
    AutoML Translation allows you to develop tailored translation models that yield results tailored to your specific field. The pricing for using AutoML Translation is determined by the duration of training needed (expressed in hours) and the total number of characters submitted for translation. It can automatically identify and translate between different languages, and it offers integrated REST and gRPC APIs, supporting 50 different language pairs. With the ability to translate using customized models, Cloud AutoML empowers developers without extensive machine learning knowledge to create high-quality models that cater to their business requirements. You can swiftly construct your personalized machine learning model in just a few minutes. For instance, if you operate a financial reporting service and wish to expand into new international markets, you may require real-time translations of urgent financial documents. AutoML Translation is designed to streamline your translation processes efficiently, allowing you to scale quickly and gain access to new markets with ease, ensuring you stay competitive in a global economy.
  • 13
    ML.NET Reviews
    ML.NET is a versatile, open-source machine learning framework that is free to use and compatible across platforms, enabling .NET developers to create tailored machine learning models using C# or F# while remaining within the .NET environment. This framework encompasses a wide range of machine learning tasks such as classification, regression, clustering, anomaly detection, and recommendation systems. Additionally, ML.NET seamlessly integrates with other renowned machine learning frameworks like TensorFlow and ONNX, which broadens the possibilities for tasks like image classification and object detection. It comes equipped with user-friendly tools such as Model Builder and the ML.NET CLI, leveraging Automated Machine Learning (AutoML) to streamline the process of developing, training, and deploying effective models. These innovative tools automatically analyze various algorithms and parameters to identify the most efficient model for specific use cases. Moreover, ML.NET empowers developers to harness the power of machine learning without requiring extensive expertise in the field.
  • 14
    Profet AI Reviews
    Profet AI’s No-Code AutoML Platform, which is end-to-end and can be used by manufacturers as their Virtual Data Scientist, provides a complete solution for data analysis. It allows IT/domain experts to quickly build high-quality predictive models and deploy Industrial AI apps to solve their daily production and digitalization challenges. Profet AI AutoML Platform has been widely adopted by leading companies in the world across industries. These include leading EMS, Semi OSAT, PCB design houses, IC design houses, display panel and material solution providers. We use the successful cases of industry leading companies to benefit our customers and implement AI within a week.
  • 15
    AutoKeras Reviews
    AutoKeras, an AutoML framework built on Keras, is designed by the DATA Lab at Texas A&M University. Its primary objective is to democratize machine learning, making it accessible to a wider audience. With an exceptionally user-friendly interface, AutoKeras facilitates a variety of tasks, enabling users to engage with machine learning effortlessly. This innovative approach removes many barriers, allowing individuals without extensive technical knowledge to leverage advanced machine learning techniques.
  • 16
    PredictSense Reviews
    PredictSense is an AI-powered machine learning platform that uses AutoML to power its end-to-end Machine Learning platform. Accelerating machine intelligence will fuel the technological revolution of tomorrow. AI is key to unlocking the value of enterprise data investments. PredictSense allows businesses to quickly create AI-driven advanced analytical solutions that can help them monetize their technology investments and critical data infrastructure. Data science and business teams can quickly develop and deploy robust technology solutions at scale. Integrate AI into your existing product ecosystem and quickly track GTM for new AI solution. AutoML's complex ML models allow you to save significant time, money and effort.
  • 17
    Vertex AI Notebooks Reviews
    Vertex AI Notebooks offers a comprehensive, end-to-end solution for machine learning development within Google Cloud. It combines the power of Colab Enterprise and Vertex AI Workbench to give data scientists and developers the tools to accelerate model training and deployment. This fully managed platform provides seamless integration with BigQuery, Dataproc, and other Google Cloud services, enabling efficient data exploration, visualization, and advanced ML model development. With built-in features like automated infrastructure management, users can focus on model building without worrying about backend maintenance. Vertex AI Notebooks also supports collaborative workflows, making it ideal for teams to work on complex AI projects together.
  • 18
    Lityx Reviews
    Empower your team to efficiently implement AI-driven business solutions at scale with cloud-based, comprehensive no-code machine learning. Enhance your team's productivity and effectively harness actionable insights from your data to forecast and improve behaviors. Quickly scale your operations and deploy models into production seamlessly. With Gurobi Optimizer, users can confront even the most challenging problems head-on. LityxIQ serves as a powerful and user-friendly, no-code AutoML platform designed by data scientists to benefit all team members. As a cloud-based SaaS, it integrates effortlessly with your existing tools, connecting seamlessly with various systems, source data platforms, data lakes, and data warehouses, in addition to leading visualization platforms. Powered by the fastest solver available, you can face the most demanding analytics tasks confidently. Moreover, our Solution Accelerators feature enhances efficiency by significantly shortening the time to achieve tangible results. This holistic approach ensures that every team member can contribute to the success of your AI initiatives.
  • 19
    Metaflow Reviews
    Data science projects achieve success when data scientists possess the ability to independently create, enhance, and manage comprehensive workflows while prioritizing their data science tasks over engineering concerns. By utilizing Metaflow alongside popular data science libraries like TensorFlow or SciKit Learn, you can write your models in straightforward Python syntax without needing to learn much that is new. Additionally, Metaflow supports the R programming language, broadening its usability. This tool aids in designing workflows, scaling them effectively, and deploying them into production environments. It automatically versions and tracks all experiments and data, facilitating easy inspection of results within notebooks. With tutorials included, newcomers can quickly familiarize themselves with the platform. You even have the option to duplicate all tutorials right into your current directory using the Metaflow command line interface, making it a seamless process to get started and explore further. As a result, Metaflow not only simplifies complex tasks but also empowers data scientists to focus on impactful analyses.
  • 20
    Intel Tiber AI Studio Reviews
    Intel® Tiber™ AI Studio serves as an all-encompassing machine learning operating system designed to streamline and unify the development of artificial intelligence. This robust platform accommodates a diverse array of AI workloads and features a hybrid multi-cloud infrastructure that enhances the speed of ML pipeline creation, model training, and deployment processes. By incorporating native Kubernetes orchestration and a meta-scheduler, Tiber™ AI Studio delivers unparalleled flexibility for managing both on-premises and cloud resources. Furthermore, its scalable MLOps framework empowers data scientists to seamlessly experiment, collaborate, and automate their machine learning workflows, all while promoting efficient and cost-effective resource utilization. This innovative approach not only boosts productivity but also fosters a collaborative environment for teams working on AI projects.
  • 21
    IBM SPSS Modeler Reviews
    IBM SPSS Modeler, a leading visual data-science and machine-learning (ML) solution, is designed to help enterprises accelerate their time to value through the automation of operational tasks by data scientists. It is used by organizations around the world for data preparation, discovery, predictive analytics and model management and deployment. ML is also used to monetize data assets. IBM SPSS Modeler transforms data in the best possible format for accurate predictive modeling. You can now analyze data in just a few clicks, identify fixes, screen fields out and derive new characteristics. IBM SPSS Modeler uses its powerful graphics engine to help you bring your insights to life. The smart chart recommender will select the best chart from dozens of options to share your insights.
  • 22
    FICO Analytics Workbench Reviews
    Predictive modeling utilizing machine learning and explainable AI is revolutionized by FICO® Analytics Workbench™, a comprehensive collection of advanced analytic authoring tools that enables organizations to enhance their business decisions throughout the customer journey. This platform allows data scientists to develop exceptional decision-making abilities by leveraging an extensive variety of predictive modeling tools and algorithms, incorporating cutting-edge machine learning and explainable AI techniques. By merging the strengths of open-source data science with FICO's proprietary innovations, we provide unparalleled analytic capabilities to uncover, integrate, and implement predictive insights from data. Additionally, the Analytics Workbench is constructed on the robust FICO® Platform, facilitating the seamless deployment of new predictive models and strategies into operational environments, thereby driving efficiency and effectiveness in business processes. Ultimately, this empowers companies to make informed, data-driven decisions that can significantly impact their success.
  • 23
    OCI Data Labeling Reviews

    OCI Data Labeling

    Oracle

    $0.0002 per 1,000 transactions
    OCI Data Labeling is a powerful tool designed for developers and data scientists to create precisely labeled datasets essential for training AI and machine learning models. This service accommodates various formats, including documents (such as PDF and TIFF), images (like JPEG and PNG), and text, enabling users to upload unprocessed data, apply various annotations—such as classification labels, object-detection bounding boxes, or key-value pairs—and then export the annotated results in line-delimited JSON format, which facilitates smooth integration into model-training processes. It also provides customizable templates tailored for different annotation types, intuitive user interfaces, and public APIs for efficient dataset creation and management. Additionally, the service ensures seamless interoperability with other data and AI services, allowing for the direct feeding of annotated data into custom vision or language models, as well as Oracle's AI offerings. Users can leverage OCI Data Labeling to generate datasets, create records, annotate them, and subsequently utilize the exported snapshots for effective model development, ensuring a streamlined workflow from data labeling to AI model training. Consequently, the service enhances the overall productivity of teams focusing on AI initiatives.
  • 24
    Cloudera Data Science Workbench Reviews
    Enhance the transition of machine learning from theoretical research to practical application with a seamless experience tailored for your conventional platform. Cloudera Data Science Workbench (CDSW) offers a user-friendly environment for data scientists, allowing them to work with Python, R, and Scala right in their web browsers. Users can download and explore the newest libraries and frameworks within customizable project settings that mirror the functionality of their local machines. CDSW ensures robust connectivity not only to CDH and HDP but also to the essential systems that support your data science teams in their analytical endeavors. Furthermore, Cloudera Data Science Workbench empowers data scientists to oversee their analytics pipelines independently, featuring integrated scheduling, monitoring, and email notifications. This platform enables rapid development and prototyping of innovative machine learning initiatives while simplifying the deployment process into a production environment. By streamlining these workflows, teams can focus on delivering impactful results more efficiently.
  • 25
    Oracle Big Data Service Reviews
    Oracle Big Data Service simplifies the deployment of Hadoop clusters for customers, offering a range of VM configurations from 1 OCPU up to dedicated bare metal setups. Users can select between high-performance NVMe storage or more budget-friendly block storage options, and have the flexibility to adjust the size of their clusters as needed. They can swiftly establish Hadoop-based data lakes that either complement or enhance existing data warehouses, ensuring that all data is both easily accessible and efficiently managed. Additionally, the platform allows for querying, visualizing, and transforming data, enabling data scientists to develop machine learning models through an integrated notebook that supports R, Python, and SQL. Furthermore, this service provides the capability to transition customer-managed Hadoop clusters into a fully-managed cloud solution, which lowers management expenses and optimizes resource use, ultimately streamlining operations for organizations of all sizes. By doing so, businesses can focus more on deriving insights from their data rather than on the complexities of cluster management.
  • 26
    Oracle Autonomous Database Reviews
    Oracle Autonomous Database is a cloud-based database solution that automates various management tasks, such as tuning, security, backups, and updates, through the use of machine learning, thereby minimizing the reliance on database administrators. It accommodates an extensive variety of data types and models, like SQL, JSON, graph, geospatial, text, and vectors, which empowers developers to create applications across diverse workloads without the necessity of multiple specialized databases. The inclusion of AI and machine learning features facilitates natural language queries, automatic data insights, and supports the creation of applications that leverage artificial intelligence. Additionally, it provides user-friendly tools for data loading, transformation, analysis, and governance, significantly decreasing the need for intervention from IT staff. Furthermore, it offers versatile deployment options, which range from serverless to dedicated setups on Oracle Cloud Infrastructure (OCI), along with the alternative of on-premises deployment using Exadata Cloud@Customer, ensuring flexibility to meet varying business needs. This comprehensive approach streamlines database management and empowers organizations to focus more on innovation rather than routine maintenance.
  • 27
    NVIDIA Merlin Reviews
    NVIDIA Merlin equips data scientists, ML engineers, and researchers with the tools necessary to create scalable, high-performance recommendation systems. This suite includes libraries, methodologies, and various tools that simplify the process of building recommenders by tackling prevalent issues related to preprocessing, feature engineering, training, inference, and production deployment. Optimized components within Merlin facilitate the retrieval, filtering, scoring, and organization of vast data sets, often reaching hundreds of terabytes, all accessed via user-friendly APIs. The implementation of Merlin enables enhanced predictions, improved click-through rates, and quicker production deployment, making it an essential resource for professionals. As a part of NVIDIA AI, Merlin exemplifies the company's dedication to empowering innovative practitioners in their work. Furthermore, this comprehensive solution is crafted to seamlessly integrate with existing recommender systems that leverage both data science and machine learning techniques, ensuring that users can build on their current workflows effectively.
  • 28
    Oracle Spatial Reviews
    In alignment with Oracle's goal of enabling individuals to perceive data in innovative ways and uncover profound insights, Oracle Database now integrates features for machine learning, spatial analysis, and graph capabilities. With an Oracle Database license, users can access these leading-edge functionalities for both development and deployment in on-premise environments as well as Oracle Cloud Database Services. The inclusion of Oracle's spatial database within the converged database framework simplifies the initiation of location intelligence analytics and mapping services for developers and analysts alike. This functionality empowers Geographic Information System (GIS) professionals to effectively implement sophisticated geospatial applications. Furthermore, organizations benefit from the ability to handle various forms of geospatial data, execute numerous spatial analytical operations, and utilize dynamic map visualization tools through the spatial features available in both Oracle Autonomous Database and Oracle Database. Consequently, these enhancements not only streamline data management but also foster greater innovation within the realm of data analytics.
  • 29
    Deepnote Reviews
    Deepnote is building the best data science notebook for teams. Connect your data, explore and analyze it within the notebook with real-time collaboration and versioning. Share links to your projects with other analysts and data scientists on your team, or present your polished, published notebooks to end users and stakeholders. All of this is done through a powerful, browser-based UI that runs in the cloud.
  • 30
    Actable AI Reviews

    Actable AI

    Actable AI

    $80 per user per month
    Harnessing cutting-edge open-source AutoML technology, we facilitate the creation of high-quality models effortlessly. This system incorporates Deep Learning and pre-trained models to enhance intelligence wherever relevant. By employing Causal AI alongside AutoML, it ensures fairness, supports causal inference, and provides counterfactual predictions. Each trained model can be deployed instantly for interactive online use or through an API, making it accessible to all users. Additionally, it offers comprehensive insights into feature importances and model explanations through Shapley values. Our AI engine operates entirely on an open-source framework, allowing for complete transparency and universal applicability of our algorithms. It effectively groups customers or products into similar cohorts based on an extensive array of features. Furthermore, it predicts future outcomes by identifying temporal patterns in historical data and is capable of training predictive models using labeled data to make predictions on unlabeled datasets, thereby enhancing its overall utility and performance.
  • 31
    JetBrains Datalore Reviews
    Datalore is a platform for collaborative data science and analytics that aims to improve the entire analytics workflow and make working with data more enjoyable for both data scientists as well as data-savvy business teams. Datalore is a collaborative platform that focuses on data teams workflow. It offers technical-savvy business users the opportunity to work with data teams using no-code and low-code, as well as the power of Jupyter Notebooks. Datalore allows business users to perform analytic self-service. They can work with data using SQL or no-code cells, create reports, and dive deep into data. It allows core data teams to focus on simpler tasks. Datalore allows data scientists and analysts to share their results with ML Engineers. You can share your code with ML Engineers on powerful CPUs and GPUs, and you can collaborate with your colleagues in real time.
  • 32
    dbForge Studio for Oracle Reviews
    dbForge Studio for Oracle is a powerful integrated development environment (IDE) which helps Oracle SQL developers to increase PL/SQL coding speed, provides versatile data editing tools for managing in-database and external data. This Oracle IDE allows synchronizing data between different Oracle servers and automating schema change management process during development. dbForge Oracle GUI features powerful functionality wrapped into a smooth management Oracle GUI consistent with Microsoft Visual Studio. Key features: * PL/SQL coding assistant * Database Project * Oracle Database Management * Data Generator Data Generator supports essential Oracle data types, includes 200+ meaningful generators with customizable settings, and allows generating data via the command-line interface. * Documenter * Object Manager * Oracle PL/SQL Debugger The Oracle debugger serves for step-by-step execution of stored program units and SQL scripts. * Query Builder * Query Profiler * Schema Import/Export * Database Administration * Database Designer * Import/Export Data * Report and Analysis * Find Object
  • 33
    SAS Data Science Programming Reviews
    Develop, implement, and manage data-driven decision-making processes on a large scale in either real-time or batch modes. SAS Data Science Programming caters to data scientists who prefer a purely programmatic method, allowing them to utilize SAS's analytical tools throughout the entire analytics life cycle, which encompasses data preparation, exploration, and deployment. Uncover and visualize significant patterns within your datasets, enabling the creation and dissemination of interactive reports and dashboards. Additionally, leverage self-service analytics to swiftly evaluate likely outcomes, leading to more informed and data-centric decisions. Engage with your data and create or modify predictive analytical models using the SAS® Viya® platform. This collaborative environment empowers data scientists, statisticians, and analysts to work together, refining their models iteratively for various segments, ultimately supporting decision-making based on reliable insights. Tackle intricate analytical challenges through an all-encompassing visual interface that efficiently manages every aspect of the analytics life cycle, ensuring that users can navigate complexities with ease and precision. By embracing this approach, organizations can enhance their strategic decision-making capabilities significantly.
  • 34
    SAS Visual Data Science Reviews
    Access, analyze, and manipulate data to uncover emerging trends and patterns effectively. SAS Visual Data Science provides a unified, self-service platform that enables the creation and sharing of intelligent visualizations alongside interactive reports. Leveraging machine learning, text analytics, and econometric techniques enhances forecasting and optimization capabilities, while also allowing for the management and registration of both SAS and open-source models, whether within projects or as independent entities. Utilize this tool to visualize and identify pertinent relationships within your data. Generate and disseminate interactive reports and dashboards, employing self-service analytics to promptly evaluate potential outcomes for more informed, data-driven decisions. Dive into data exploration and construct or modify predictive analytical models using this solution integrated with SAS® Viya®. By fostering collaboration among data scientists, statisticians, and analysts, teams can iteratively refine models tailored to specific segments or groups, thereby empowering decisions rooted in precise insights. This collaborative approach not only enhances model accuracy but also accelerates the decision-making process significantly.
  • 35
    H2O.ai Reviews
    H2O.ai stands at the forefront of open source AI and machine learning, dedicated to making artificial intelligence accessible to all. Our cutting-edge platforms, which are designed for enterprise readiness, support hundreds of thousands of data scientists across more than 20,000 organizations worldwide. By enabling companies in sectors such as finance, insurance, healthcare, telecommunications, retail, pharmaceuticals, and marketing, we are helping to foster a new wave of businesses that harness the power of AI to drive tangible value and innovation in today's marketplace. With our commitment to democratizing technology, we aim to transform how industries operate and thrive.
  • 36
    Neuton AutoML Reviews
    Neuton.AI, an automated solution, empowering users to build accurate predictive models and make smart predictions with: Zero code solution Zero need for technical skills Zero need for data science knowledge
  • 37
    Unity Catalog Reviews
    The Unity Catalog from Databricks stands out as the sole comprehensive and open governance framework tailored for data and artificial intelligence, integrated within the Databricks Data Intelligence Platform. This innovative solution enables organizations to effortlessly manage structured and unstructured data in various formats, in addition to machine learning models, notebooks, dashboards, and files on any cloud or platform. Data scientists, analysts, and engineers can securely navigate, access, and collaborate on reliable data and AI resources across diverse environments, harnessing AI capabilities to enhance efficiency and realize the full potential of the lakehouse architecture. By adopting this cohesive and open governance strategy, organizations can foster interoperability and expedite their data and AI projects, all while making regulatory compliance easier to achieve. Furthermore, users can quickly identify and categorize both structured and unstructured data, including machine learning models, notebooks, dashboards, and files, across all cloud platforms, ensuring a streamlined governance experience. This comprehensive approach not only simplifies data management but also encourages a collaborative culture among teams.
  • 38
    SensiML Analytics Studio Reviews
    The SensiML Analytics Toolkit enables the swift development of smart IoT sensor devices while simplifying the complexities of data science. It focuses on creating compact algorithms designed to run on small IoT endpoints instead of relying on cloud processing. By gathering precise, traceable, and version-controlled datasets, it enhances data integrity. The toolkit employs advanced AutoML code generation to facilitate the rapid creation of autonomous device code. Users can select their preferred interface and level of AI expertise while maintaining full oversight of all algorithm components. It also supports the development of edge tuning models that adapt behavior based on incoming data over time. The SensiML Analytics Toolkit automates every step necessary for crafting optimized AI recognition code for IoT sensors. Utilizing an expanding library of sophisticated machine learning and AI algorithms, the overall workflow produces code capable of learning from new data, whether during development or after deployment. Moreover, non-invasive applications for rapid disease screening that intelligently classify multiple bio-sensing inputs serve as essential tools for aiding healthcare decision-making processes. This capability positions the toolkit as an invaluable resource in both tech and healthcare sectors.
  • 39
    RapidMiner Reviews
    RapidMiner is redefining enterprise AI so anyone can positively shape the future. RapidMiner empowers data-loving people from all levels to quickly create and implement AI solutions that drive immediate business impact. Our platform unites data prep, machine-learning, and model operations. This provides a user experience that is both rich in data science and simplified for all others. Customers are guaranteed success with our Center of Excellence methodology, RapidMiner Academy and no matter what level of experience or resources they have.
  • 40
    Jupyter Notebook Reviews
    The Jupyter Notebook is a web-based open-source tool that enables users to create and distribute documents featuring live code, visualizations, equations, and written explanations. Its applications are diverse and encompass tasks such as data cleaning and transformation, statistical modeling, numerical simulations, data visualization, machine learning, among others, showcasing its versatility in various fields. Additionally, it serves as an excellent platform for collaboration and sharing insights within the data science community.
  • 41
    Einblick Reviews
    Einblick offers a swift and highly collaborative platform for data exploration, prediction generation, and application deployment. Our innovative canvases transform the data science process by simplifying the exploration, cleaning, and manipulation of data through a user-friendly interface. Unlike other platforms, we enable real-time collaboration among your entire team, emphasizing that collective decision-making is essential. Stop spending time on manual model adjustments; our AutoML feature is designed to facilitate the creation of transparent predictions and pinpoint crucial influencing factors effortlessly. Einblick also streamlines common analytics tasks into user-friendly operators, allowing you to minimize repetitive work and reach conclusions more quickly. Whether your data resides in Snowflake, S3 buckets, or CSV files, you can connect your data source and start drawing insights in no time. For instance, by analyzing a list of churned and active customers, you can integrate all relevant information about them, revealing the primary reasons for churn and assessing the risk level for each customer effectively. Moreover, our platform empowers teams to make data-driven decisions with confidence, ensuring that insights are accessible and actionable for everyone involved.
  • 42
    Comet Reviews

    Comet

    Comet

    $179 per user per month
    Manage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders.
  • 43
    MarkovML Reviews
    MarkovML is an intuitive AI platform that eliminates the need for coding, enabling businesses to accelerate their data analysis processes, efficiently deploy automated machine learning applications, and optimize their machine learning workflows for better productivity. Its user-friendly interface is designed to make complex tasks more accessible to all users.
  • 44
    Google Colab Reviews
    Google Colab is a complimentary, cloud-based Jupyter Notebook platform that facilitates environments for machine learning, data analysis, and educational initiatives. It provides users with immediate access to powerful computational resources, including GPUs and TPUs, without the need for complex setup, making it particularly suitable for those engaged in data-heavy projects. Users can execute Python code in an interactive notebook format, collaborate seamlessly on various projects, and utilize a wide range of pre-built tools to enhance their experimentation and learning experience. Additionally, Colab has introduced a Data Science Agent that streamlines the analytical process by automating tasks from data comprehension to providing insights within a functional Colab notebook, although it is important to note that the agent may produce errors. This innovative feature further supports users in efficiently navigating the complexities of data science workflows.
  • 45
    Google Cloud Healthcare API Reviews
    The Google Cloud Healthcare API is a comprehensive managed service designed to facilitate secure and scalable data exchange among healthcare applications and services. It accommodates widely recognized protocols and formats like DICOM, FHIR, and HL7v2, which supports the ingestion, storage, and analysis of healthcare-related data in the Google Cloud ecosystem. Furthermore, by connecting with sophisticated analytics and machine learning platforms such as BigQuery, AutoML, and Vertex AI, this API enables healthcare organizations to extract valuable insights and foster innovation in both patient care and operational processes. This capability ultimately enhances decision-making and improves overall healthcare delivery.