Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Introducing an open-source AI model that can be fine-tuned, distilled, and deployed across various platforms. Our newest instruction-tuned model comes in three sizes: 8B, 70B, and 405B, giving you options to suit different needs. With our open ecosystem, you can expedite your development process using a diverse array of tailored product offerings designed to meet your specific requirements. You have the flexibility to select between real-time inference and batch inference services according to your project's demands. Additionally, you can download model weights to enhance cost efficiency per token while fine-tuning for your application. Improve performance further by utilizing synthetic data and seamlessly deploy your solutions on-premises or in the cloud. Take advantage of Llama system components and expand the model's capabilities through zero-shot tool usage and retrieval-augmented generation (RAG) to foster agentic behaviors. By utilizing 405B high-quality data, you can refine specialized models tailored to distinct use cases, ensuring optimal functionality for your applications. Ultimately, this empowers developers to create innovative solutions that are both efficient and effective.
Description
On June 23, 2025, Microsoft unveiled Mu, an innovative 330-million-parameter encoder–decoder language model specifically crafted to enhance the agent experience within Windows environments by effectively translating natural language inquiries into function calls for Settings, all processed on-device via NPUs at a remarkable speed of over 100 tokens per second while ensuring impressive accuracy. By leveraging Phi Silica optimizations, Mu’s encoder–decoder design employs a fixed-length latent representation that significantly reduces both computational demands and memory usage, achieving a 47 percent reduction in first-token latency and a decoding speed that is 4.7 times greater on Qualcomm Hexagon NPUs when compared to other decoder-only models. Additionally, the model benefits from hardware-aware tuning techniques, which include a thoughtful 2/3–1/3 split of encoder and decoder parameters, shared weights for input and output embeddings, Dual LayerNorm, rotary positional embeddings, and grouped-query attention, allowing for swift inference rates exceeding 200 tokens per second on devices such as the Surface Laptop 7, along with sub-500 ms response times for settings-related queries. This combination of features positions Mu as a groundbreaking advancement in on-device language processing capabilities.
API Access
Has API
API Access
Has API
Integrations
1min.AI
Agenta
Alpaca
Azure AI Foundry Agent Service
Azure Marketplace
BlueFlame AI
Deep Infra
Firecrawl
Gopher
Hermes 3
Integrations
1min.AI
Agenta
Alpaca
Azure AI Foundry Agent Service
Azure Marketplace
BlueFlame AI
Deep Infra
Firecrawl
Gopher
Hermes 3
Pricing Details
Free
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Meta
Founded
2004
Country
United States
Website
llama.meta.com
Vendor Details
Company Name
Microsoft
Founded
1975
Country
United States
Website
blogs.windows.com/windowsexperience/2025/06/23/introducing-mu-language-model-and-how-it-enabled-the-agent-in-windows-settings/