Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
LiteLLM serves as a comprehensive platform that simplifies engagement with more than 100 Large Language Models (LLMs) via a single, cohesive interface. It includes both a Proxy Server (LLM Gateway) and a Python SDK, which allow developers to effectively incorporate a variety of LLMs into their applications without hassle. The Proxy Server provides a centralized approach to management, enabling load balancing, monitoring costs across different projects, and ensuring that input/output formats align with OpenAI standards. Supporting a wide range of providers, this system enhances operational oversight by creating distinct call IDs for each request, which is essential for accurate tracking and logging within various systems. Additionally, developers can utilize pre-configured callbacks to log information with different tools, further enhancing functionality. For enterprise clients, LiteLLM presents a suite of sophisticated features, including Single Sign-On (SSO), comprehensive user management, and dedicated support channels such as Discord and Slack, ensuring that businesses have the resources they need to thrive. This holistic approach not only improves efficiency but also fosters a collaborative environment where innovation can flourish.
Description
MLflow is an open-source suite designed to oversee the machine learning lifecycle, encompassing aspects such as experimentation, reproducibility, deployment, and a centralized model registry. The platform features four main components that facilitate various tasks: tracking and querying experiments encompassing code, data, configurations, and outcomes; packaging data science code to ensure reproducibility across multiple platforms; deploying machine learning models across various serving environments; and storing, annotating, discovering, and managing models in a unified repository. Among these, the MLflow Tracking component provides both an API and a user interface for logging essential aspects like parameters, code versions, metrics, and output files generated during the execution of machine learning tasks, enabling later visualization of results. It allows for logging and querying experiments through several interfaces, including Python, REST, R API, and Java API. Furthermore, an MLflow Project is a structured format for organizing data science code, ensuring it can be reused and reproduced easily, with a focus on established conventions. Additionally, the Projects component comes equipped with an API and command-line tools specifically designed for executing these projects effectively. Overall, MLflow streamlines the management of machine learning workflows, making it easier for teams to collaborate and iterate on their models.
API Access
Has API
API Access
Has API
Integrations
Amazon SageMaker
Databricks Data Intelligence Platform
Docker
Apolo
Clarifai
Cloudflare Workers
Codestral
Comet LLM
DeepSeek
Determined AI
Integrations
Amazon SageMaker
Databricks Data Intelligence Platform
Docker
Apolo
Clarifai
Cloudflare Workers
Codestral
Comet LLM
DeepSeek
Determined AI
Pricing Details
Free
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
LiteLLM
Country
United States
Website
www.litellm.ai/
Vendor Details
Company Name
MLflow
Founded
2018
Country
United States
Website
mlflow.org
Product Features
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization