Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
LibFuzzer serves as an in-process, coverage-guided engine for evolutionary fuzzing. By being linked directly with the library under examination, it injects fuzzed inputs through a designated entry point, or target function, allowing it to monitor the code paths that are executed while creating variations of the input data to enhance code coverage. The coverage data is obtained through LLVM’s SanitizerCoverage instrumentation, ensuring that users have detailed insights into the testing process. Notably, LibFuzzer continues to receive support, with critical bugs addressed as they arise. To begin utilizing LibFuzzer with a library, one must first create a fuzz target—this function receives a byte array and interacts with the API being tested in a meaningful way. Importantly, this fuzz target operates independently of LibFuzzer, which facilitates its use alongside other fuzzing tools such as AFL or Radamsa, thereby providing versatility in testing strategies. Furthermore, the ability to leverage multiple fuzzing engines can lead to more robust testing outcomes and clearer insights into the library's vulnerabilities.
Description
Go-fuzz serves as a coverage-guided fuzzing tool designed specifically for testing Go packages, making it particularly effective for those that handle intricate inputs, whether they are textual or binary in nature. This method of testing is crucial for strengthening systems that need to process data from potentially harmful sources, such as network interactions. Recently, go-fuzz has introduced initial support for fuzzing Go Modules, inviting users to report any issues they encounter with detailed descriptions. It generates random input data, which is often invalid, and the function must return a value of 1 to indicate that the fuzzer should elevate the priority of that input in future fuzzing attempts, provided that it should not be stored in the corpus, even if it uncovers new coverage; a return value of 0 signifies the opposite, while other values are reserved for future enhancements. The fuzz function is required to reside in a package that go-fuzz can recognize, meaning the code under test cannot be located within the main package, although fuzzing of internal packages is permitted. This structured approach ensures that the testing process remains efficient and focused on identifying vulnerabilities in the code.
API Access
Has API
API Access
Has API
Integrations
Atheris
C
C++
ClusterFuzz
Fuzzbuzz
Google ClusterFuzz
Jazzer
Integrations
Atheris
C
C++
ClusterFuzz
Fuzzbuzz
Google ClusterFuzz
Jazzer
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
LLVM Project
Founded
2003
Website
llvm.org/docs/LibFuzzer.html
Vendor Details
Company Name
dvyukov
Website
github.com/dvyukov/go-fuzz