Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

LibFuzzer serves as an in-process, coverage-guided engine for evolutionary fuzzing. By being linked directly with the library under examination, it injects fuzzed inputs through a designated entry point, or target function, allowing it to monitor the code paths that are executed while creating variations of the input data to enhance code coverage. The coverage data is obtained through LLVM’s SanitizerCoverage instrumentation, ensuring that users have detailed insights into the testing process. Notably, LibFuzzer continues to receive support, with critical bugs addressed as they arise. To begin utilizing LibFuzzer with a library, one must first create a fuzz target—this function receives a byte array and interacts with the API being tested in a meaningful way. Importantly, this fuzz target operates independently of LibFuzzer, which facilitates its use alongside other fuzzing tools such as AFL or Radamsa, thereby providing versatility in testing strategies. Furthermore, the ability to leverage multiple fuzzing engines can lead to more robust testing outcomes and clearer insights into the library's vulnerabilities.

Description

Fuzz testing, commonly referred to as fuzzing, is a technique used in software testing that aims to discover implementation errors by injecting malformed or semi-malformed data in an automated way. For example, consider a scenario involving an integer variable within a program that captures a user's selection among three questions; the user's choice can be represented by the integers 0, 1, or 2, resulting in three distinct cases. Since integers are typically stored as fixed-size variables, a failure to implement the default switch case securely could lead to program crashes and various traditional security vulnerabilities. Fuzzing serves as an automated method for uncovering software implementation issues, enabling the identification of bugs when they occur. A fuzzer is a specialized tool designed to automatically inject semi-random data into the program stack, aiding in the detection of anomalies. The process of generating this data involves the use of generators, while the identification of vulnerabilities often depends on debugging tools that can analyze the program's behavior under the influence of the injected data. These generators typically utilize a mixture of established static fuzzing vectors to enhance the testing process, ultimately contributing to more robust software development practices.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Atheris
C
C++
CI Fuzz
ClusterFuzz
Fuzzbuzz
Google ClusterFuzz
Jazzer

Integrations

Atheris
C
C++
CI Fuzz
ClusterFuzz
Fuzzbuzz
Google ClusterFuzz
Jazzer

Pricing Details

Free
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

LLVM Project

Founded

2003

Website

llvm.org/docs/LibFuzzer.html

Vendor Details

Company Name

OWASP

Country

United States

Website

owasp.org/www-community/Fuzzing

Product Features

Product Features

Alternatives

Atheris Reviews

Atheris

Google

Alternatives

afl-unicorn Reviews

afl-unicorn

Battelle
Radamsa Reviews

Radamsa

Aki Helin
go-fuzz Reviews

go-fuzz

dvyukov
go-fuzz Reviews

go-fuzz

dvyukov
Jazzer Reviews

Jazzer

Code Intelligence
ClusterFuzz Reviews

ClusterFuzz

Google