Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Transformers is a versatile library that includes pretrained models for natural language processing, computer vision, audio, and multimodal tasks, facilitating both inference and training. With the Transformers library, you can effectively train models tailored to your specific data, create inference applications, and utilize large language models for text generation. Visit the Hugging Face Hub now to discover a suitable model and leverage Transformers to kickstart your projects immediately. This library provides a streamlined and efficient inference class that caters to various machine learning tasks, including text generation, image segmentation, automatic speech recognition, and document question answering, among others. Additionally, it features a robust trainer that incorporates advanced capabilities like mixed precision, torch.compile, and FlashAttention, making it ideal for both training and distributed training of PyTorch models. The library ensures rapid text generation through large language models and vision-language models, and each model is constructed from three fundamental classes (configuration, model, and preprocessor), allowing for quick deployment in either inference or training scenarios. Overall, Transformers empowers users with the tools needed to create sophisticated machine learning solutions with ease and efficiency.

Description

VLLM is an advanced library tailored for the efficient inference and deployment of Large Language Models (LLMs). Initially created at the Sky Computing Lab at UC Berkeley, it has grown into a collaborative initiative enriched by contributions from both academic and industry sectors. The library excels in providing exceptional serving throughput by effectively handling attention key and value memory through its innovative PagedAttention mechanism. It accommodates continuous batching of incoming requests and employs optimized CUDA kernels, integrating technologies like FlashAttention and FlashInfer to significantly improve the speed of model execution. Furthermore, VLLM supports various quantization methods, including GPTQ, AWQ, INT4, INT8, and FP8, and incorporates speculative decoding features. Users enjoy a seamless experience by integrating easily with popular Hugging Face models and benefit from a variety of decoding algorithms, such as parallel sampling and beam search. Additionally, VLLM is designed to be compatible with a wide range of hardware, including NVIDIA GPUs, AMD CPUs and GPUs, and Intel CPUs, ensuring flexibility and accessibility for developers across different platforms. This broad compatibility makes VLLM a versatile choice for those looking to implement LLMs efficiently in diverse environments.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Hugging Face
PyTorch
Docker
KServe
Kubernetes
NGINX
NVIDIA DRIVE
OpenAI

Integrations

Hugging Face
PyTorch
Docker
KServe
Kubernetes
NGINX
NVIDIA DRIVE
OpenAI

Pricing Details

$9 per month
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Hugging Face

Founded

2016

Country

United States

Website

huggingface.co/docs/transformers/en/index

Vendor Details

Company Name

VLLM

Country

United States

Website

docs.vllm.ai/en/latest/

Product Features

Product Features

Alternatives

Alternatives

LM-Kit.NET Reviews

LM-Kit.NET

LM-Kit
OpenVINO Reviews

OpenVINO

Intel
Contextual.ai Reviews

Contextual.ai

Contextual AI