Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Honggfuzz is a software fuzzer focused on enhancing security through its advanced fuzzing techniques. It employs evolutionary and feedback-driven methods that rely on both software and hardware-based code coverage. This tool is designed to operate in a multi-process and multi-threaded environment, allowing users to maximize their CPU's potential without needing to launch multiple fuzzer instances. The file corpus is seamlessly shared and refined across all processes undergoing fuzzing, which greatly enhances efficiency. When persistent fuzzing mode is activated, Honggfuzz exhibits remarkable speed, capable of executing a simple or empty LLVMFuzzerTestOneInput function at an impressive rate of up to one million iterations per second on modern CPUs. It has a proven history of identifying security vulnerabilities, including the notable discovery of the only critical vulnerability in OpenSSL to date. Unlike other fuzzing tools, Honggfuzz can detect and report on hijacked or ignored signals that result from crashes, making it a valuable asset for identifying hidden issues within fuzzed programs. Its robust features make it an essential tool for security researchers aiming to uncover hidden flaws in software systems.
Description
LibFuzzer serves as an in-process, coverage-guided engine for evolutionary fuzzing. By being linked directly with the library under examination, it injects fuzzed inputs through a designated entry point, or target function, allowing it to monitor the code paths that are executed while creating variations of the input data to enhance code coverage. The coverage data is obtained through LLVM’s SanitizerCoverage instrumentation, ensuring that users have detailed insights into the testing process. Notably, LibFuzzer continues to receive support, with critical bugs addressed as they arise. To begin utilizing LibFuzzer with a library, one must first create a fuzz target—this function receives a byte array and interacts with the API being tested in a meaningful way. Importantly, this fuzz target operates independently of LibFuzzer, which facilitates its use alongside other fuzzing tools such as AFL or Radamsa, thereby providing versatility in testing strategies. Furthermore, the ability to leverage multiple fuzzing engines can lead to more robust testing outcomes and clearer insights into the library's vulnerabilities.
API Access
Has API
API Access
Has API
Integrations
ClusterFuzz
Google ClusterFuzz
Atheris
C
C++
Cygwin
FreeBSD
Fuzzbuzz
Jazzer
NetBSD
Integrations
ClusterFuzz
Google ClusterFuzz
Atheris
C
C++
Cygwin
FreeBSD
Fuzzbuzz
Jazzer
NetBSD
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Country
United States
Website
github.com/google/honggfuzz
Vendor Details
Company Name
LLVM Project
Founded
2003
Website
llvm.org/docs/LibFuzzer.html