Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
A streaming database is specifically designed to efficiently ingest, store, process, and analyze large volumes of data streams. This advanced data infrastructure integrates messaging, stream processing, and storage to enable real-time value extraction from your data. It continuously handles vast amounts of data generated by diverse sources, including sensors from IoT devices. Data streams are securely stored in a dedicated distributed streaming data storage cluster that can manage millions of streams. By subscribing to topics in HStreamDB, users can access and consume data streams in real-time at speeds comparable to Kafka. The system also allows for permanent storage of data streams, enabling users to replay and analyze them whenever needed. With a familiar SQL syntax, you can process these data streams based on event-time, similar to querying data in a traditional relational database. This functionality enables users to filter, transform, aggregate, and even join multiple streams seamlessly, enhancing the overall data analysis experience. Ultimately, the integration of these features ensures that organizations can leverage their data effectively and make timely decisions.
Description
QuasarDB, the core of Quasar's intelligence, is an advanced, distributed, column-oriented database management system specifically engineered for high-performance timeseries data handling, enabling real-time processing for massive petascale applications. It boasts up to 20 times less disk space requirement, making it exceptionally efficient. The unmatched ingestion and compression features of QuasarDB allow for up to 10,000 times quicker feature extraction. This database can perform real-time feature extraction directly from raw data via an integrated map/reduce query engine, a sophisticated aggregation engine that utilizes SIMD capabilities of contemporary CPUs, and stochastic indexes that consume minimal disk storage. Its ultra-efficient resource utilization, ability to integrate with object storage solutions like S3, innovative compression methods, and reasonable pricing structure make it the most economical timeseries solution available. Furthermore, QuasarDB is versatile enough to operate seamlessly across various platforms, from 32-bit ARM devices to high-performance Intel servers, accommodating both Edge Computing environments and traditional cloud or on-premises deployments. Its scalability and efficiency make it an ideal choice for businesses aiming to harness the full potential of their data in real-time.
API Access
Has API
API Access
Has API
Integrations
Apache Cordova
Apache Spark
Azure Databricks
Elastic Cloud
Microsoft Excel
MongoDB
Oracle Fusion Cloud ERP
Presto
PyTorch
RadSystems
Integrations
Apache Cordova
Apache Spark
Azure Databricks
Elastic Cloud
Microsoft Excel
MongoDB
Oracle Fusion Cloud ERP
Presto
PyTorch
RadSystems
Pricing Details
Free
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
EMQ
Founded
2013
Country
United States
Website
hstream.io
Vendor Details
Company Name
QuasarDB
Founded
2008
Country
France
Website
www.quasardb.net
Product Features
Database
Backup and Recovery
Creation / Development
Data Migration
Data Replication
Data Search
Data Security
Database Conversion
Mobile Access
Monitoring
NOSQL
Performance Analysis
Queries
Relational Interface
Virtualization
Product Features
Database
Backup and Recovery
Creation / Development
Data Migration
Data Replication
Data Search
Data Security
Database Conversion
Mobile Access
Monitoring
NOSQL
Performance Analysis
Queries
Relational Interface
Virtualization