Best QuasarDB Alternatives in 2025

Find the top alternatives to QuasarDB currently available. Compare ratings, reviews, pricing, and features of QuasarDB alternatives in 2025. Slashdot lists the best QuasarDB alternatives on the market that offer competing products that are similar to QuasarDB. Sort through QuasarDB alternatives below to make the best choice for your needs

  • 1
    StarTree Reviews
    See Software
    Learn More
    Compare Both
    StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time.
  • 2
    RaimaDB Reviews
    Top Pick See Software
    Learn More
    Compare Both
    RaimaDB, an embedded time series database that can be used for Edge and IoT devices, can run in-memory. It is a lightweight, secure, and extremely powerful RDBMS. It has been field tested by more than 20 000 developers around the world and has been deployed in excess of 25 000 000 times. RaimaDB is a high-performance, cross-platform embedded database optimized for mission-critical applications in industries such as IoT and edge computing. Its lightweight design makes it ideal for resource-constrained environments, supporting both in-memory and persistent storage options. RaimaDB offers flexible data modeling, including traditional relational models and direct relationships through network model sets. With ACID-compliant transactions and advanced indexing methods like B+Tree, Hash Table, R-Tree, and AVL-Tree, it ensures data reliability and efficiency. Built for real-time processing, it incorporates multi-version concurrency control (MVCC) and snapshot isolation, making it a robust solution for applications demanding speed and reliability.
  • 3
    Redis Reviews
    Redis Labs is the home of Redis. Redis Enterprise is the best Redis version. Redis Enterprise is more than a cache. Redis Enterprise can be free in the cloud with NoSQL and data caching using the fastest in-memory database. Redis can be scaled, enterprise-grade resilience, massive scaling, ease of administration, and operational simplicity. Redis in the Cloud is a favorite of DevOps. Developers have access to enhanced data structures and a variety modules. This allows them to innovate faster and has a faster time-to-market. CIOs love the security and expert support of Redis, which provides 99.999% uptime. Use relational databases for active-active, geodistribution, conflict distribution, reads/writes in multiple regions to the same data set. Redis Enterprise offers flexible deployment options. Redis Labs is the home of Redis. Redis JSON, Redis Java, Python Redis, Redis on Kubernetes & Redis gui best practices.
  • 4
    Snowflake Reviews
    Snowflake offers a unified AI Data Cloud platform that transforms how businesses store, analyze, and leverage data by eliminating silos and simplifying architectures. It features interoperable storage that enables seamless access to diverse datasets at massive scale, along with an elastic compute engine that delivers leading performance for a wide range of workloads. Snowflake Cortex AI integrates secure access to cutting-edge large language models and AI services, empowering enterprises to accelerate AI-driven insights. The platform’s cloud services automate and streamline resource management, reducing complexity and cost. Snowflake also offers Snowgrid, which securely connects data and applications across multiple regions and cloud providers for a consistent experience. Their Horizon Catalog provides built-in governance to manage security, privacy, compliance, and access control. Snowflake Marketplace connects users to critical business data and apps to foster collaboration within the AI Data Cloud network. Serving over 11,000 customers worldwide, Snowflake supports industries from healthcare and finance to retail and telecom.
  • 5
    eXtremeDB Reviews
    What makes eXtremeDB platform independent? - Hybrid storage of data. Unlike other IMDS databases, eXtremeDB databases are all-in-memory or all-persistent. They can also have a mix between persistent tables and in-memory table. eXtremeDB's Active Replication Fabric™, which is unique to eXtremeDB, offers bidirectional replication and multi-tier replication (e.g. edge-to-gateway-to-gateway-to-cloud), compression to maximize limited bandwidth networks and more. - Row and columnar flexibility for time series data. eXtremeDB supports database designs which combine column-based and row-based layouts in order to maximize the CPU cache speed. - Client/Server and embedded. eXtremeDB provides data management that is fast and flexible wherever you need it. It can be deployed as an embedded system and/or as a clients/server database system. eXtremeDB was designed for use in resource-constrained, mission-critical embedded systems. Found in over 30,000,000 deployments, from routers to satellites and trains to stock market world-wide.
  • 6
    SAP HANA Cloud Reviews
    SAP HANA Cloud serves as a fully managed in-memory database as a service (DBaaS) that operates in the cloud. Functioning as the essential data backbone for the SAP Business Technology Platform, it assimilates information from various sectors of the organization, allowing for quicker decision-making based on real-time data. This platform empowers users to construct data solutions using contemporary architectures, yielding actionable insights instantly. As the cloud variant of SAP HANA, it provides the same robust capabilities while being scalable to fit specific requirements, allowing for the processing of diverse business data and facilitating advanced analytics on live transactions with minimal need for optimization. Users can effortlessly connect to distributed data through native integrations, develop applications and tools both in the cloud and on-premises, and manage transient data efficiently. By establishing a singular source of truth, enterprises can access reliable information while ensuring security, privacy, and data anonymization, all upheld by a foundation of enterprise-grade reliability. Furthermore, SAP HANA Cloud supports the evolving needs of businesses as they adapt to dynamic market conditions.
  • 7
    Axibase Time Series Database Reviews
    A parallel query engine designed for efficient access to time- and symbol-indexed data. It incorporates an extended SQL syntax that allows for sophisticated filtering and aggregation capabilities. Users can unify quotes, trades, snapshots, and reference data within a single environment. The platform supports strategy backtesting using high-frequency data for enhanced analysis. It facilitates quantitative research and insights into market microstructure. Additionally, it offers detailed transaction cost analysis and comprehensive rollup reporting features. Market surveillance mechanisms and anomaly detection capabilities are also integrated into the system. The decomposition of non-transparent ETF/ETN instruments is supported, along with the utilization of FAST, SBE, and proprietary communication protocols. A plain text protocol is available alongside consolidated and direct data feeds. The system includes built-in tools for monitoring latency and provides end-of-day archival options. It can perform ETL processes from both institutional and retail financial data sources. Designed with a parallel SQL engine that features syntax extensions, it allows advanced filtering by trading session, auction stage, and index composition for precise analysis. Optimizations for aggregates related to OHLCV and VWAP calculations enhance performance. An interactive SQL console with auto-completion improves user experience, while an API endpoint facilitates seamless programmatic integration. Scheduled SQL reporting options are available, allowing delivery via email, file, or web. JDBC and ODBC drivers ensure compatibility with various applications, making this system a versatile tool for financial data handling.
  • 8
    Machbase Reviews
    Machbase is a leading time-series database designed for real-time storage and analysis of vast amounts of sensor data from various facilities. It stands out as the only database management system (DBMS) capable of processing and analyzing large datasets at remarkable speeds, showcasing its impressive capabilities. Experience the extraordinary processing speeds that Machbase offers! This innovative product allows for immediate handling, storage, and analysis of sensor information. It achieves rapid storage and querying of sensor data by integrating the DBMS directly into Edge devices. Additionally, it provides exceptional performance in data storage and extraction when operating on a single server. With the ability to configure multi-node clusters, Machbase offers enhanced availability and scalability. Furthermore, it serves as a comprehensive management solution for Edge computing, addressing device management, connectivity, and data handling needs effectively. In a fast-paced data-driven world, Machbase proves to be an essential tool for industries relying on real-time sensor data analysis.
  • 9
    DuckDB Reviews
    Handling and storing tabular data, such as that found in CSV or Parquet formats, is essential for data management. Transferring large result sets to clients is a common requirement, especially in extensive client/server frameworks designed for centralized enterprise data warehousing. Additionally, writing to a single database from various simultaneous processes poses its own set of challenges. DuckDB serves as a relational database management system (RDBMS), which is a specialized system for overseeing data organized into relations. In this context, a relation refers to a table, characterized by a named collection of rows. Each row within a table maintains a consistent structure of named columns, with each column designated to hold a specific data type. Furthermore, tables are organized within schemas, and a complete database comprises a collection of these schemas, providing structured access to the stored data. This organization not only enhances data integrity but also facilitates efficient querying and reporting across diverse datasets.
  • 10
    ClickHouse Reviews
    ClickHouse is an efficient, open-source OLAP database management system designed for high-speed data processing. Its column-oriented architecture facilitates the creation of analytical reports through real-time SQL queries. In terms of performance, ClickHouse outshines similar column-oriented database systems currently on the market. It has the capability to handle hundreds of millions to over a billion rows, as well as tens of gigabytes of data, on a single server per second. By maximizing the use of available hardware, ClickHouse ensures rapid query execution. The peak processing capacity for individual queries can exceed 2 terabytes per second, considering only the utilized columns after decompression. In a distributed environment, read operations are automatically optimized across available replicas to minimize latency. Additionally, ClickHouse features multi-master asynchronous replication, enabling deployment across various data centers. Each node operates equally, effectively eliminating potential single points of failure and enhancing overall reliability. This robust architecture allows organizations to maintain high availability and performance even under heavy workloads.
  • 11
    GridDB Reviews
    GridDB utilizes multicast communication to form its cluster, so it's essential to configure the network for this purpose. Start by verifying the host name and IP address; you can do this by running the command “hostname -i” to check the host's IP address configuration. If the reported IP address matches the specified value below, you can proceed directly to the next section without any further network adjustments. GridDB is a database designed to manage a collection of data entries, each consisting of a key paired with several values. In addition to functioning as an in-memory database that organizes all data within the memory, it also supports a hybrid architecture that combines both memory and disk storage, which can include solid-state drives (SSDs). This flexibility allows for efficient data management and retrieval, catering to various application needs.
  • 12
    Amazon Timestream Reviews
    Amazon Timestream is an efficient, scalable, and serverless time series database designed for IoT and operational applications, capable of storing and analyzing trillions of events daily with speeds up to 1,000 times faster and costs as low as 1/10th that of traditional relational databases. By efficiently managing the lifecycle of time series data, Amazon Timestream reduces both time and expenses by keeping current data in memory while systematically transferring historical data to a more cost-effective storage tier based on user-defined policies. Its specialized query engine allows users to seamlessly access and analyze both recent and historical data without the need to specify whether the data is in memory or in the cost-optimized tier. Additionally, Amazon Timestream features integrated time series analytics functions, enabling users to detect trends and patterns in their data almost in real-time, making it an invaluable tool for data-driven decision-making. Furthermore, this service is designed to scale effortlessly with your data needs while ensuring optimal performance and cost efficiency.
  • 13
    Apache Druid Reviews
    Apache Druid is a distributed data storage solution that is open source. Its fundamental architecture merges concepts from data warehouses, time series databases, and search technologies to deliver a high-performance analytics database capable of handling a diverse array of applications. By integrating the essential features from these three types of systems, Druid optimizes its ingestion process, storage method, querying capabilities, and overall structure. Each column is stored and compressed separately, allowing the system to access only the relevant columns for a specific query, which enhances speed for scans, rankings, and groupings. Additionally, Druid constructs inverted indexes for string data to facilitate rapid searching and filtering. It also includes pre-built connectors for various platforms such as Apache Kafka, HDFS, and AWS S3, as well as stream processors and others. The system adeptly partitions data over time, making queries based on time significantly quicker than those in conventional databases. Users can easily scale resources by simply adding or removing servers, and Druid will manage the rebalancing automatically. Furthermore, its fault-tolerant design ensures resilience by effectively navigating around any server malfunctions that may occur. This combination of features makes Druid a robust choice for organizations seeking efficient and reliable real-time data analytics solutions.
  • 14
    QuestDB Reviews
    QuestDB is an advanced relational database that focuses on column-oriented storage optimized for time series and event-driven data. It incorporates SQL with additional features tailored for time-based analytics to facilitate real-time data processing. This documentation encompasses essential aspects of QuestDB, including initial setup instructions, comprehensive usage manuals, and reference materials for syntax, APIs, and configuration settings. Furthermore, it elaborates on the underlying architecture of QuestDB, outlining its methods for storing and querying data, while also highlighting unique functionalities and advantages offered by the platform. A key feature is the designated timestamp, which empowers time-focused queries and efficient data partitioning. Additionally, the symbol type enhances the efficiency of managing and retrieving frequently used strings. The storage model explains how QuestDB organizes records and partitions within its tables, and the use of indexes can significantly accelerate read access for specific columns. Moreover, partitions provide substantial performance improvements for both calculations and queries. With its SQL extensions, users can achieve high-performance time series analysis using a streamlined syntax that simplifies complex operations. Overall, QuestDB stands out as a powerful tool for handling time-oriented data effectively.
  • 15
    Apache Geode Reviews
    Develop high-speed, data-centric applications that can dynamically adapt to performance needs regardless of scale. Leverage the distinctive technology of Apache Geode, which integrates sophisticated methods for data replication, partitioning, and distributed processing. With a database-like consistency model, Apache Geode guarantees dependable transaction handling and employs a shared-nothing architecture that supports remarkably low latency, even under high concurrency. The platform allows for seamless data partitioning (sharding) and replication across nodes, enabling performance to grow in accordance with demand. Reliability is bolstered by maintaining redundant in-memory copies along with disk-based persistence. Additionally, it features rapid write-ahead logging (WAL) persistence, optimized for quick parallel recovery of individual nodes or the entire cluster, ensuring robust performance even during failures. This combination of features not only enhances efficiency but also significantly improves overall system resilience.
  • 16
    SSuite MonoBase Database Reviews
    You can create flat or relational databases with unlimited fields, tables, and rows. A custom report builder is included. Create custom reports by connecting to compatible ODBC databases. You can create your own databases. Here are some highlights: Filter tables instantly - Ultra simple graphical-user-interface - One-click table and data form creation - You can open up to 5 databases simultaneously Export your data to comma-separated files - Create custom reports to all your databases - A complete helpfile for creating database reports - You can print tables and queries directly from your data grid - Supports any SQL standard your ODBC compatible databases require For best performance and user experience, please install and run this database app with full administrator rights. Requirements: . 1024x768 Display Size . Windows 98 / XP / Windows 8 / Windows 10 - 32bit or 64bit No Java or DotNet are required. Green Energy Software. One step at a time, saving the planet
  • 17
    H2 Reviews
    Welcome to H2, a Java SQL database designed for efficient data management. In its embedded mode, an application can access the database directly within the same Java Virtual Machine (JVM) using JDBC, making it the quickest and simplest connection method available. However, a drawback of this setup is that the database can only be accessed by one virtual machine and class loader at a time. Like other modes, it accommodates both persistent and in-memory databases without restrictions on the number of simultaneous database accesses or open connections. On the other hand, the mixed mode combines features of both embedded and server modes; the initial application that connects to the database operates in embedded mode while simultaneously launching a server to enable other applications in different processes or virtual machines to access the same data concurrently. This allows local connections to maintain the high speed of the embedded mode, whereas remote connections may experience slight delays. Overall, H2 provides a flexible and robust solution for various database needs.
  • 18
    SAP HANA Reviews
    SAP HANA is an in-memory database designed to handle both transactional and analytical workloads using a single copy of data, regardless of type. It effectively dissolves the barriers between transactional and analytical processes within organizations, facilitating rapid decision-making whether deployed on-premises or in the cloud. This innovative database management system empowers users to create intelligent, real-time solutions, enabling swift decision-making from a unified data source. By incorporating advanced analytics, it enhances the capabilities of next-generation transaction processing. Organizations can build data solutions that capitalize on cloud-native attributes such as scalability, speed, and performance. With SAP HANA Cloud, businesses can access reliable, actionable information from one cohesive platform while ensuring robust security, privacy, and data anonymization, reflecting proven enterprise standards. In today's fast-paced environment, an intelligent enterprise relies on timely insights derived from data, emphasizing the need for real-time delivery of such valuable information. As the demand for immediate access to insights grows, leveraging an efficient database like SAP HANA becomes increasingly critical for organizations aiming to stay competitive.
  • 19
    Timescale Reviews
    TimescaleDB is the most popular open-source relational database that supports time-series data. Fully managed or self-hosted. You can rely on the same PostgreSQL that you love. It has full SQL, rock-solid reliability and a huge ecosystem. Write millions of data points per node. Horizontally scale up to petabytes. Don't worry too much about cardinality. Reduce complexity, ask more questions and build more powerful applications. You will save money with 94-97% compression rates using best-in-class algorithms, and other performance improvements. Modern cloud-native relational database platform that stores time-series data. It is based on PostgreSQL and TimescaleDB. This is the fastest, easiest, and most reliable way to store all of your time-series information. All observability data can be considered time-series data. Time-series problems are those that require efficient solutions to infrastructure and application problems.
  • 20
    SQL Server Reviews
    Microsoft SQL Server 2019 incorporates both intelligence and security, providing users with added features at no additional cost while ensuring top-tier performance and adaptability for on-premises requirements. You can seamlessly transition to the cloud, taking full advantage of its efficiency and agility without the need to alter your existing code. By leveraging Azure, you can accelerate insight generation and predictive analytics. Development is flexible, allowing you to utilize your preferred technologies, including open-source options, supported by Microsoft's advancements. The platform enables easy data integration into your applications and offers a comprehensive suite of cognitive services that facilitate the creation of human-like intelligence, regardless of data volume. The integration of AI is intrinsic to the data platform, allowing for quicker insight extraction from both on-premises and cloud-stored data. By combining your unique enterprise data with global data, you can foster an organization that is driven by intelligence. The dynamic data platform provides a consistent user experience across various environments, expediting the time it takes to bring innovations to market; this allows you to develop your applications and deploy them in any environment you choose, enhancing overall operational efficiency.
  • 21
    StarRocks Reviews
    Regardless of whether your project involves a single table or numerous tables, StarRocks guarantees an impressive performance improvement of at least 300% when compared to other widely used solutions. With its comprehensive array of connectors, you can seamlessly ingest streaming data and capture information in real time, ensuring that you always have access to the latest insights. The query engine is tailored to suit your specific use cases, allowing for adaptable analytics without the need to relocate data or modify SQL queries. This provides an effortless way to scale your analytics capabilities as required. StarRocks not only facilitates a swift transition from data to actionable insights, but also stands out with its unmatched performance, offering a holistic OLAP solution that addresses the most prevalent data analytics requirements. Its advanced memory-and-disk-based caching framework is purpose-built to reduce I/O overhead associated with retrieving data from external storage, significantly enhancing query performance while maintaining efficiency. This unique combination of features ensures that users can maximize their data's potential without unnecessary delays.
  • 22
    kdb+ Reviews
    Introducing a robust cross-platform columnar database designed for high-performance historical time-series data, which includes: - A compute engine optimized for in-memory operations - A streaming processor that functions in real time - A powerful query and programming language known as q Kdb+ drives the kdb Insights portfolio and KDB.AI, offering advanced time-focused data analysis and generative AI functionalities to many of the world's top enterprises. Recognized for its unparalleled speed, kdb+ has been independently benchmarked* as the leading in-memory columnar analytics database, providing exceptional benefits for organizations confronting complex data challenges. This innovative solution significantly enhances decision-making capabilities, enabling businesses to adeptly respond to the ever-evolving data landscape. By leveraging kdb+, companies can gain deeper insights that lead to more informed strategies.
  • 23
    Baidu Palo Reviews
    Palo empowers businesses to swiftly establish a PB-level MPP architecture data warehouse service in just minutes while seamlessly importing vast amounts of data from sources like RDS, BOS, and BMR. This capability enables Palo to execute multi-dimensional big data analytics effectively. Additionally, it integrates smoothly with popular BI tools, allowing data analysts to visualize and interpret data swiftly, thereby facilitating informed decision-making. Featuring a top-tier MPP query engine, Palo utilizes column storage, intelligent indexing, and vector execution to enhance performance. Moreover, it offers in-library analytics, window functions, and a range of advanced analytical features. Users can create materialized views and modify table structures without interrupting services, showcasing its flexibility. Furthermore, Palo ensures efficient data recovery, making it a reliable solution for enterprises looking to optimize their data management processes.
  • 24
    Tabular Reviews

    Tabular

    Tabular

    $100 per month
    Tabular is an innovative open table storage solution designed by the same team behind Apache Iceberg, allowing seamless integration with various computing engines and frameworks. By leveraging this technology, users can significantly reduce both query times and storage expenses, achieving savings of up to 50%. It centralizes the enforcement of role-based access control (RBAC) policies, ensuring data security is consistently maintained. The platform is compatible with multiple query engines and frameworks, such as Athena, BigQuery, Redshift, Snowflake, Databricks, Trino, Spark, and Python, offering extensive flexibility. With features like intelligent compaction and clustering, as well as other automated data services, Tabular further enhances efficiency by minimizing storage costs and speeding up query performance. It allows for unified data access at various levels, whether at the database or table. Additionally, managing RBAC controls is straightforward, ensuring that security measures are not only consistent but also easily auditable. Tabular excels in usability, providing robust ingestion capabilities and performance, all while maintaining effective RBAC management. Ultimately, it empowers users to select from a variety of top-tier compute engines, each tailored to their specific strengths, while also enabling precise privilege assignments at the database, table, or even column level. This combination of features makes Tabular a powerful tool for modern data management.
  • 25
    IBM Db2 Big SQL Reviews
    IBM Db2 Big SQL is a sophisticated hybrid SQL-on-Hadoop engine that facilitates secure and advanced data querying across a range of enterprise big data sources, such as Hadoop, object storage, and data warehouses. This enterprise-grade engine adheres to ANSI standards and provides massively parallel processing (MPP) capabilities, enhancing the efficiency of data queries. With Db2 Big SQL, users can execute a single database connection or query that spans diverse sources, including Hadoop HDFS, WebHDFS, relational databases, NoSQL databases, and object storage solutions. It offers numerous advantages, including low latency, high performance, robust data security, compatibility with SQL standards, and powerful federation features, enabling both ad hoc and complex queries. Currently, Db2 Big SQL is offered in two distinct variations: one that integrates seamlessly with Cloudera Data Platform and another as a cloud-native service on the IBM Cloud Pak® for Data platform. This versatility allows organizations to access and analyze data effectively, performing queries on both batch and real-time data across various sources, thus streamlining their data operations and decision-making processes. In essence, Db2 Big SQL provides a comprehensive solution for managing and querying extensive datasets in an increasingly complex data landscape.
  • 26
    Raijin  Reviews
    To address the challenges posed by sparse data, the Raijin Database adopts a flat JSON format for its data records. This database primarily utilizes SQL for querying while overcoming some of SQL's inherent restrictions. By employing data compression techniques, it not only conserves disk space but also enhances performance, particularly with contemporary CPU architectures. Many NoSQL options fall short in efficiently handling analytical queries or completely lack this functionality. However, Raijin DB facilitates group by operations and aggregations through standard SQL syntax. Its vectorized execution combined with cache-optimized algorithms enables the processing of substantial datasets effectively. Additionally, with the support of advanced SIMD instructions (SSE2/AVX2) and a modern hybrid columnar storage mechanism, it prevents CPU cycles from being wasted. Consequently, this results in exceptional data processing capabilities that outperform many alternatives, particularly those developed in higher-level or interpreted programming languages that struggle with large data volumes. This efficiency positions Raijin DB as a powerful solution for users needing to analyze and manipulate extensive datasets rapidly and effectively.
  • 27
    Trendalyze Reviews
    Time-sensitive decisions require immediate attention. With TRND, machine learning projects can be accelerated from lengthy timelines to mere minutes, similar to the efficiency of Google's AI search engine that delivers insights in real time. Financial losses can stem from inaccuracies, and unlike standard KPIs, TRND identifies patterns that uncover critical information hidden from traditional metrics. This tool empowers decision-makers by highlighting trends that signal emerging threats or opportunities. In today's digital landscape, knowledge equates to financial advantage. TRND allows for the creation of shareable pattern libraries, promoting rapid learning and implementation for enhancing business operations. Without comprehensive monitoring, potential profits remain untapped. TRND excels at not only identifying rare insights but also continuously tracking relevant information across all indicators. The myth that scaling efforts must be excessively costly is shattered by our innovative search-based method, which makes extensive micro-monitoring both feasible and economical. In essence, TRND revolutionizes the approach to data utilization, ensuring that businesses stay ahead in a competitive environment.
  • 28
    RocksDB Reviews
    RocksDB is a high-performance database engine that employs a log-structured design and is entirely implemented in C++. It treats keys and values as byte streams of arbitrary sizes, allowing for flexibility in data representation. Specifically designed for rapid, low-latency storage solutions such as flash memory and high-speed disks, RocksDB capitalizes on the impressive read and write speeds provided by these technologies. The database supports a range of fundamental operations, from basic tasks like opening and closing a database to more complex functions such as merging and applying compaction filters. Its versatility makes RocksDB suitable for various workloads, including database storage engines like MyRocks as well as application data caching and embedded systems. This adaptability ensures that developers can rely on RocksDB for a wide spectrum of data management needs in different environments.
  • 29
    Warp 10 Reviews
    Warp 10 is a modular open source platform that collects, stores, and allows you to analyze time series and sensor data. Shaped for the IoT with a flexible data model, Warp 10 provides a unique and powerful framework to simplify your processes from data collection to analysis and visualization, with the support of geolocated data in its core model (called Geo Time Series). Warp 10 offers both a time series database and a powerful analysis environment, which can be used together or independently. It will allow you to make: statistics, extraction of characteristics for training models, filtering and cleaning of data, detection of patterns and anomalies, synchronization or even forecasts. The Platform is GDPR compliant and secure by design using cryptographic tokens to manage authentication and authorization. The Analytics Engine can be implemented within a large number of existing tools and ecosystems such as Spark, Kafka Streams, Hadoop, Jupyter, Zeppelin and many more. From small devices to distributed clusters, Warp 10 fits your needs at any scale, and can be used in many verticals: industry, transportation, health, monitoring, finance, energy, etc.
  • 30
    Fauna Reviews
    Fauna is a data API that supports rich clients with serverless backends. It provides a web-native interface that supports GraphQL, custom business logic, frictionless integration to the serverless ecosystem, and a multi-cloud architecture that you can trust and grow with.
  • 31
    Oracle TimesTen Reviews
    Oracle TimesTen In-Memory Database (TimesTen) enhances real-time application performance by rethinking the runtime data storage approach, resulting in reduced response times and increased throughput. By utilizing in-memory data management and refining data structures alongside access algorithms, TimesTen maximizes the efficiency of database operations, leading to significant improvements in both responsiveness and transaction throughput. The launch of TimesTen Scaleout introduces a shared-nothing architecture that builds on the existing in-memory capabilities, enabling seamless scaling across numerous hosts, accommodating vast data volumes of hundreds of terabytes, and processing hundreds of millions of transactions per second, all without requiring manual sharding or workload distribution. This innovative approach not only streamlines performance but also simplifies the overall database management experience for users.
  • 32
    Oracle Database Reviews
    Oracle's database offerings provide clients with cost-effective and high-efficiency options, including the renowned multi-model database management system, as well as in-memory, NoSQL, and MySQL databases. The Oracle Autonomous Database, which can be accessed on-premises through Oracle Cloud@Customer or within the Oracle Cloud Infrastructure, allows users to streamline their relational database systems and lessen management burdens. By removing the intricacies associated with operating and securing Oracle Database, Oracle Autonomous Database ensures customers experience exceptional performance, scalability, and reliability. Furthermore, organizations concerned about data residency and network latency can opt for on-premises deployment of Oracle Database. Additionally, clients who rely on specific versions of Oracle databases maintain full authority over their operational versions and the timing of any updates. This flexibility empowers businesses to tailor their database environments according to their unique requirements.
  • 33
    kdb Insights Reviews
    kdb Insights is an advanced analytics platform built for the cloud, enabling high-speed real-time analysis of both live and past data streams. It empowers users to make informed decisions efficiently, regardless of the scale or speed of the data, and boasts exceptional price-performance ratios, achieving analytics performance that is up to 100 times quicker while costing only 10% compared to alternative solutions. The platform provides interactive data visualization through dynamic dashboards, allowing for immediate insights that drive timely decision-making. Additionally, it incorporates machine learning models to enhance predictive capabilities, identify clusters, detect patterns, and evaluate structured data, thereby improving AI functionalities on time-series datasets. With remarkable scalability, kdb Insights can manage vast amounts of real-time and historical data, demonstrating effectiveness with loads of up to 110 terabytes daily. Its rapid deployment and straightforward data ingestion process significantly reduce the time needed to realize value, while it natively supports q, SQL, and Python, along with compatibility for other programming languages through RESTful APIs. This versatility ensures that users can seamlessly integrate kdb Insights into their existing workflows and leverage its full potential for a wide range of analytical tasks.
  • 34
    SingleStore Reviews
    SingleStore, previously known as MemSQL, is a highly scalable and distributed SQL database that can operate in any environment. It is designed to provide exceptional performance for both transactional and analytical tasks while utilizing well-known relational models. This database supports continuous data ingestion, enabling operational analytics critical for frontline business activities. With the capacity to handle millions of events each second, SingleStore ensures ACID transactions and allows for the simultaneous analysis of vast amounts of data across various formats, including relational SQL, JSON, geospatial, and full-text search. It excels in data ingestion performance at scale and incorporates built-in batch loading alongside real-time data pipelines. Leveraging ANSI SQL, SingleStore offers rapid query responses for both current and historical data, facilitating ad hoc analysis through business intelligence tools. Additionally, it empowers users to execute machine learning algorithms for immediate scoring and conduct geoanalytic queries in real-time, thereby enhancing decision-making processes. Furthermore, its versatility makes it a strong choice for organizations looking to derive insights from diverse data types efficiently.
  • 35
    Blueflood Reviews
    Blueflood is an advanced distributed metric processing system designed for high throughput and low latency, operating as a multi-tenant solution that supports Rackspace Metrics. It is actively utilized by both the Rackspace Monitoring team and the Rackspace public cloud team to effectively manage and store metrics produced by their infrastructure. Beyond its application within Rackspace, Blueflood also sees extensive use in large-scale deployments documented in community resources. The data collected through Blueflood is versatile, allowing users to create dashboards, generate reports, visualize data through graphs, or engage in any activities that involve analyzing time-series data. With a primary emphasis on near-real-time processing, data can be queried just milliseconds after it is ingested, ensuring timely access to information. Users send their metrics to the ingestion service and retrieve them from the Query service, while the system efficiently handles background rollups through offline batch processing, thus facilitating quick responses for queries covering extended time frames. This architecture not only enhances performance but also ensures that users can rely on rapid access to their critical metrics for effective decision-making.
  • 36
    Amazon FinSpace Reviews
    Amazon FinSpace streamlines the deployment of kdb Insights applications on AWS, making the process significantly easier. By automating the routine tasks necessary for provisioning, integrating, and securing the infrastructure needed for kdb Insights, Amazon FinSpace simplifies operations for its users. Furthermore, it offers intuitive APIs that enable customers to set up and initiate new kdb Insights applications in just a matter of minutes. This platform allows users the flexibility to transition their existing kdb Insights applications to AWS, harnessing the advantages of cloud computing without the burden of managing complex and expensive infrastructure. KX's kdb Insights serves as a robust analytics engine, tailored for the examination of both real-time and extensive historical time-series data. Frequently utilized by clients in Capital Markets, kdb Insights supports essential business functions such as options pricing, transaction cost analysis, and backtesting. Additionally, it eliminates the need to integrate more than 15 AWS services for the deployment of kdb, streamlining the entire process further. Overall, Amazon FinSpace empowers organizations to focus on their analytics while minimizing operational overhead.
  • 37
    OpenTSDB Reviews
    OpenTSDB comprises a Time Series Daemon (TSD) along with a suite of command line tools. Users primarily engage with OpenTSDB by operating one or more independent TSDs, as there is no centralized master or shared state, allowing for the scalability to run multiple TSDs as necessary to meet varying loads. Each TSD utilizes HBase, an open-source database, or the hosted Google Bigtable service for the storage and retrieval of time-series data. The schema designed for the data is highly efficient, enabling rapid aggregations of similar time series while minimizing storage requirements. Users interact with the TSD without needing direct access to the underlying storage system. Communication with the TSD can be accomplished through a straightforward telnet-style protocol, an HTTP API, or a user-friendly built-in graphical interface. To begin utilizing OpenTSDB, the initial task is to send time series data to the TSDs, and there are various tools available to facilitate the import of data from different sources into OpenTSDB. Overall, OpenTSDB's design emphasizes flexibility and efficiency for time series data management.
  • 38
    VeloDB Reviews
    VeloDB, which utilizes Apache Doris, represents a cutting-edge data warehouse designed for rapid analytics on large-scale real-time data. It features both push-based micro-batch and pull-based streaming data ingestion that occurs in mere seconds, alongside a storage engine capable of real-time upserts, appends, and pre-aggregations. The platform delivers exceptional performance for real-time data serving and allows for dynamic interactive ad-hoc queries. VeloDB accommodates not only structured data but also semi-structured formats, supporting both real-time analytics and batch processing capabilities. Moreover, it functions as a federated query engine, enabling seamless access to external data lakes and databases in addition to internal data. The system is designed for distribution, ensuring linear scalability. Users can deploy it on-premises or as a cloud service, allowing for adaptable resource allocation based on workload demands, whether through separation or integration of storage and compute resources. Leveraging the strengths of open-source Apache Doris, VeloDB supports the MySQL protocol and various functions, allowing for straightforward integration with a wide range of data tools, ensuring flexibility and compatibility across different environments.
  • 39
    Presto Reviews
    Presto serves as an open-source distributed SQL query engine designed for executing interactive analytic queries across data sources that can range in size from gigabytes to petabytes. It addresses the challenges faced by data engineers who often navigate multiple query languages and interfaces tied to isolated databases and storage systems. Presto stands out as a quick and dependable solution by offering a unified ANSI SQL interface for comprehensive data analytics and your open lakehouse. Relying on different engines for various workloads often leads to the necessity of re-platforming in the future. However, with Presto, you benefit from a singular, familiar ANSI SQL language and one engine for all your analytic needs, negating the need to transition to another lakehouse engine. Additionally, it efficiently accommodates both interactive and batch workloads, handling small to large datasets and scaling from just a few users to thousands. By providing a straightforward ANSI SQL interface for all your data residing in varied siloed systems, Presto effectively integrates your entire data ecosystem, fostering seamless collaboration and accessibility across platforms. Ultimately, this integration empowers organizations to make more informed decisions based on a comprehensive view of their data landscape.
  • 40
    Proficy Historian Reviews
    Proficy Historian stands out as a premier historian software solution designed to gather industrial time-series and A&E data at remarkable speeds, ensuring secure and efficient storage, distribution, and rapid access for analysis, ultimately enhancing business value. With a wealth of experience and a track record of thousands of successful implementations globally, Proficy Historian transforms how organizations operate and compete by making critical data accessible for analyzing asset and process performance. The latest version of Proficy Historian offers improved usability, configurability, and maintainability thanks to significant advancements in its architecture. Users can leverage the solution's powerful yet straightforward features to derive new insights from their equipment, process data, and business strategies. Additionally, the remote collector management feature enhances user experience, while horizontal scalability facilitates comprehensive data visibility across the enterprise, making it an essential tool for modern businesses. By adopting Proficy Historian, companies can unlock untapped potential and drive operational excellence.
  • 41
    Trino Reviews
    Trino is a remarkably fast query engine designed to operate at exceptional speeds. It serves as a high-performance, distributed SQL query engine tailored for big data analytics, enabling users to delve into their vast data environments. Constructed for optimal efficiency, Trino excels in low-latency analytics and is extensively utilized by some of the largest enterprises globally to perform queries on exabyte-scale data lakes and enormous data warehouses. It accommodates a variety of scenarios, including interactive ad-hoc analytics, extensive batch queries spanning several hours, and high-throughput applications that require rapid sub-second query responses. Trino adheres to ANSI SQL standards, making it compatible with popular business intelligence tools like R, Tableau, Power BI, and Superset. Moreover, it allows direct querying of data from various sources such as Hadoop, S3, Cassandra, and MySQL, eliminating the need for cumbersome, time-consuming, and error-prone data copying processes. This capability empowers users to access and analyze data from multiple systems seamlessly within a single query. Such versatility makes Trino a powerful asset in today's data-driven landscape.
  • 42
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 43
    Backtrace Reviews
    Ensure that crashes from apps, devices, or games do not hinder your exceptional user experience. Backtrace simplifies cross-platform crash and exception management, allowing you to concentrate on product delivery. It offers seamless aggregation and monitoring of callstacks and events across various platforms. You can manage errors arising from panics, core dumps, minidumps, and runtime issues within a unified system. With Backtrace, structured and searchable error reports are generated from your data effortlessly. The automated analysis feature significantly reduces resolution time by highlighting crucial signals that guide engineers toward identifying the root causes of crashes. You can rely on rich integrations with dashboards, notifications, and workflow systems to ensure no detail is overlooked. Utilize Backtrace’s advanced query engine to address the inquiries that matter most to your team. Gain insights through a comprehensive overview of error frequency, prioritization, and trends across all your projects while also being able to sift through key data points and your custom information associated with each error. This streamlined approach enhances your efficiency in managing and resolving issues promptly.
  • 44
    Arroyo Reviews
    Scale from zero to millions of events per second effortlessly. Arroyo is delivered as a single, compact binary, allowing for local development on MacOS or Linux, and seamless deployment to production environments using Docker or Kubernetes. As a pioneering stream processing engine, Arroyo has been specifically designed to simplify real-time processing, making it more accessible than traditional batch processing. Its architecture empowers anyone with SQL knowledge to create dependable, efficient, and accurate streaming pipelines. Data scientists and engineers can independently develop comprehensive real-time applications, models, and dashboards without needing a specialized team of streaming professionals. By employing SQL, users can transform, filter, aggregate, and join data streams, all while achieving sub-second response times. Your streaming pipelines should remain stable and not trigger alerts simply because Kubernetes has chosen to reschedule your pods. Built for modern, elastic cloud infrastructures, Arroyo supports everything from straightforward container runtimes like Fargate to complex, distributed setups on Kubernetes, ensuring versatility and robust performance across various environments. This innovative approach to stream processing significantly enhances the ability to manage data flows in real-time applications.
  • 45
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics.