Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Quickly set up a virtual machine on Google Cloud for your deep learning project using the Deep Learning VM Image, which simplifies the process of launching a VM with essential AI frameworks on Google Compute Engine. This solution allows you to initiate Compute Engine instances that come equipped with popular libraries such as TensorFlow, PyTorch, and scikit-learn, eliminating concerns over software compatibility. Additionally, you have the flexibility to incorporate Cloud GPU and Cloud TPU support effortlessly. The Deep Learning VM Image is designed to support both the latest and most widely used machine learning frameworks, ensuring you have access to cutting-edge tools like TensorFlow and PyTorch. To enhance the speed of your model training and deployment, these images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers, as well as the Intel® Math Kernel Library. By using this service, you can hit the ground running with all necessary frameworks, libraries, and drivers pre-installed and validated for compatibility. Furthermore, the Deep Learning VM Image provides a smooth notebook experience through its integrated support for JupyterLab, facilitating an efficient workflow for your data science tasks. This combination of features makes it an ideal solution for both beginners and experienced practitioners in the field of machine learning.
Description
TensorFlow Agents (TF-Agents) is an extensive library tailored for reinforcement learning within the TensorFlow framework. It streamlines the creation, execution, and evaluation of new RL algorithms by offering modular components that are both reliable and amenable to customization. Through TF-Agents, developers can quickly iterate on code while ensuring effective test integration and performance benchmarking. The library features a diverse range of agents, including DQN, PPO, REINFORCE, SAC, and TD3, each equipped with their own networks and policies. Additionally, it provides resources for crafting custom environments, policies, and networks, which aids in the development of intricate RL workflows. TF-Agents is designed to work seamlessly with Python and TensorFlow environments, presenting flexibility for various development and deployment scenarios. Furthermore, it is fully compatible with TensorFlow 2.x and offers extensive tutorials and guides to assist users in initiating agent training on established environments such as CartPole. Overall, TF-Agents serves as a robust framework for researchers and developers looking to explore the field of reinforcement learning.
API Access
Has API
API Access
Has API
Integrations
TensorFlow
Chainer
Google Cloud Platform
Google Cloud TPU
Google Compute Engine
JupyterLab
MXNet
NVIDIA DRIVE
PyTorch
Python
Integrations
TensorFlow
Chainer
Google Cloud Platform
Google Cloud TPU
Google Compute Engine
JupyterLab
MXNet
NVIDIA DRIVE
PyTorch
Python
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Founded
1998
Country
United States
Website
cloud.google.com/deep-learning-vm
Vendor Details
Company Name
Tensorflow
Founded
2015
Country
United States
Website
www.tensorflow.org/agents
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization