Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Faiss is a powerful library designed for the efficient search and clustering of dense vector data. It provides algorithms capable of searching through vector sets of varying sizes, even those that may exceed RAM capacity. Additionally, it includes tools for evaluation and fine-tuning parameters to optimize performance. Written in C++, Faiss offers comprehensive wrappers for Python, making it accessible for a broader range of users. Notably, many of its most effective algorithms are optimized for GPU execution, enhancing computational speed. This library is a product of Facebook AI Research, reflecting their commitment to advancing artificial intelligence technologies. Its versatility makes Faiss a valuable resource for researchers and developers alike.

Description

Vald is a powerful and scalable distributed search engine designed for fast approximate nearest neighbor searches of dense vectors. Built on a Cloud-Native architecture, it leverages the rapid ANN Algorithm NGT to efficiently locate neighbors. With features like automatic vector indexing and index backup, Vald can handle searches across billions of feature vectors seamlessly. The platform is user-friendly, packed with features, and offers extensive customization options to meet various needs. Unlike traditional graph systems that require locking during indexing, which can halt operations, Vald employs a distributed index graph, allowing it to maintain functionality even while indexing. Additionally, Vald provides a highly customizable Ingress/Egress filter that integrates smoothly with the gRPC interface. It is designed for horizontal scalability in both memory and CPU, accommodating different workload demands. Notably, Vald also supports automatic backup capabilities using Object Storage or Persistent Volume, ensuring reliable disaster recovery solutions for users. This combination of advanced features and flexibility makes Vald a standout choice for developers and organizations alike.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Docker
Go
Haystack
IBM watsonx.data
Java
Kubernetes
LLMWare.ai
Node.js
Python

Integrations

Docker
Go
Haystack
IBM watsonx.data
Java
Kubernetes
LLMWare.ai
Node.js
Python

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Meta

Founded

2004

Country

United States

Website

faiss.ai/

Vendor Details

Company Name

Vald

Website

vald.vdaas.org

Product Features

Product Features

Alternatives

Alternatives

Embeddinghub Reviews

Embeddinghub

Featureform
txtai Reviews

txtai

NeuML