Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Cohere's Embed stands out as a premier multimodal embedding platform that effectively converts text, images, or a blend of both into high-quality vector representations. These vector embeddings are specifically tailored for various applications such as semantic search, retrieval-augmented generation, classification, clustering, and agentic AI. The newest version, embed-v4.0, introduces the capability to handle mixed-modality inputs, permitting users to create a unified embedding from both text and images. It features Matryoshka embeddings that can be adjusted in dimensions of 256, 512, 1024, or 1536, providing users with the flexibility to optimize performance against resource usage. With a context length that accommodates up to 128,000 tokens, embed-v4.0 excels in managing extensive documents and intricate data formats. Moreover, it supports various compressed embedding types such as float, int8, uint8, binary, and ubinary, which contributes to efficient storage solutions and expedites retrieval in vector databases. Its multilingual capabilities encompass over 100 languages, positioning it as a highly adaptable tool for applications across the globe. Consequently, users can leverage this platform to handle diverse datasets effectively while maintaining performance efficiency.
Description
The Parallel Search API is a specialized web-search solution crafted exclusively for AI agents, aimed at delivering the richest, most token-efficient context for large language models and automated processes. Unlike conventional search engines that cater to human users, this API empowers agents to articulate their needs through declarative semantic goals instead of relying solely on keywords. It provides a selection of ranked URLs along with concise excerpts optimized for model context windows, which enhances accuracy, reduces the number of search iterations, and lowers the token expenditure per result. Additionally, the infrastructure comprises a unique crawler, real-time index updates, freshness maintenance policies, domain-filtering capabilities, and compliance with SOC 2 Type 2 security standards. This API is designed for seamless integration into agent workflows, permitting developers to customize parameters such as the maximum character count per result, choose specialized processors, modify output sizes, and directly incorporate retrieval into AI reasoning frameworks. Consequently, it ensures that AI agents can access and utilize information more effectively and efficiently than ever before.
API Access
Has API
API Access
Has API
Integrations
Amazon Web Services (AWS)
Cohere
GPT-4.1
Model Context Protocol (MCP)
OpenAI
Python
Integrations
Amazon Web Services (AWS)
Cohere
GPT-4.1
Model Context Protocol (MCP)
OpenAI
Python
Pricing Details
$0.47 per image
Free Trial
Free Version
Pricing Details
$5 per 1,000 requests
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Cohere
Founded
2019
Country
Canada
Website
cohere.com/embed
Vendor Details
Company Name
Parallel
Country
United States
Website
parallel.ai/products/search