Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Cohere's Embed stands out as a premier multimodal embedding platform that effectively converts text, images, or a blend of both into high-quality vector representations. These vector embeddings are specifically tailored for various applications such as semantic search, retrieval-augmented generation, classification, clustering, and agentic AI. The newest version, embed-v4.0, introduces the capability to handle mixed-modality inputs, permitting users to create a unified embedding from both text and images. It features Matryoshka embeddings that can be adjusted in dimensions of 256, 512, 1024, or 1536, providing users with the flexibility to optimize performance against resource usage. With a context length that accommodates up to 128,000 tokens, embed-v4.0 excels in managing extensive documents and intricate data formats. Moreover, it supports various compressed embedding types such as float, int8, uint8, binary, and ubinary, which contributes to efficient storage solutions and expedites retrieval in vector databases. Its multilingual capabilities encompass over 100 languages, positioning it as a highly adaptable tool for applications across the globe. Consequently, users can leverage this platform to handle diverse datasets effectively while maintaining performance efficiency.
Description
Nomic Embed is a comprehensive collection of open-source, high-performance embedding models tailored for a range of uses, such as multilingual text processing, multimodal content integration, and code analysis. Among its offerings, Nomic Embed Text v2 employs a Mixture-of-Experts (MoE) architecture that efficiently supports more than 100 languages with a remarkable 305 million active parameters, ensuring fast inference. Meanwhile, Nomic Embed Text v1.5 introduces flexible embedding dimensions ranging from 64 to 768 via Matryoshka Representation Learning, allowing developers to optimize for both performance and storage requirements. In the realm of multimodal applications, Nomic Embed Vision v1.5 works in conjunction with its text counterparts to create a cohesive latent space for both text and image data, enhancing the capability for seamless multimodal searches. Furthermore, Nomic Embed Code excels in embedding performance across various programming languages, making it an invaluable tool for developers. This versatile suite of models not only streamlines workflows but also empowers developers to tackle a diverse array of challenges in innovative ways.
API Access
Has API
API Access
Has API
Pricing Details
$0.47 per image
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Cohere
Founded
2019
Country
Canada
Website
cohere.com/embed
Vendor Details
Company Name
Nomic
Country
United States
Website
www.nomic.ai/embed