Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Recent advancements in the realm of text-to-image synthesis have emerged from diffusion models that have been trained on vast amounts of image-text pairs. To successfully transition this methodology to 3D synthesis, it would necessitate extensive datasets of labeled 3D assets alongside effective architectures for denoising 3D information, both of which are currently lacking. In this study, we address these challenges by leveraging a pre-existing 2D text-to-image diffusion model to achieve text-to-3D synthesis. We propose a novel loss function grounded in probability density distillation that allows a 2D diffusion model to serve as a guiding principle for the optimization of a parametric image generator. By implementing this loss in a DeepDream-inspired approach, we refine a randomly initialized 3D model, specifically a Neural Radiance Field (NeRF), through gradient descent to ensure its 2D renderings from various angles exhibit a minimized loss. Consequently, the 3D representation generated from the specified text can be observed from multiple perspectives, illuminated with various lighting conditions, or seamlessly integrated into diverse 3D settings. This innovative method opens new avenues for the application of 3D modeling in creative and commercial fields.
Description
By incorporating image conditioning techniques alongside a prompt-based editing method, we offer users innovative ways to manipulate 3D synthesis, paving the way for various creative possibilities. Magic3D excels in generating high-quality 3D textured mesh models based on textual prompts. It employs a coarse-to-fine approach that utilizes both low- and high-resolution diffusion priors to effectively learn the 3D representation of the desired content. Moreover, Magic3D produces 3D content with 8 times the resolution supervision compared to DreamFusion, while also operating at twice the speed. Once a rough model is created from an initial text prompt, we can alter elements of the prompt and subsequently fine-tune both the NeRF and 3D mesh models, resulting in an enhanced high-resolution 3D mesh. This versatility not only enhances user creativity but also streamlines the workflow for producing detailed 3D visualizations.
API Access
Has API
API Access
Has API
Integrations
No details available.
Integrations
No details available.
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
DreamFusion
Website
dreamfusion3d.github.io
Vendor Details
Company Name
Magic3D
Website
research.nvidia.com/labs/dir/magic3d/