Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
DeepSeekMath is an advanced 7B parameter language model created by DeepSeek-AI, specifically engineered to enhance mathematical reasoning capabilities within open-source language models. Building upon the foundation of DeepSeek-Coder-v1.5, this model undergoes additional pre-training utilizing 120 billion math-related tokens gathered from Common Crawl, complemented by data from natural language and coding sources. It has shown exceptional outcomes, achieving a score of 51.7% on the challenging MATH benchmark without relying on external tools or voting systems, positioning itself as a strong contender against models like Gemini-Ultra and GPT-4. The model's prowess is further bolstered by a carefully curated data selection pipeline and the implementation of Group Relative Policy Optimization (GRPO), which improves both its mathematical reasoning skills and efficiency in memory usage. DeepSeekMath is offered in various formats including base, instruct, and reinforcement learning (RL) versions, catering to both research and commercial interests, and is intended for individuals eager to delve into or leverage sophisticated mathematical problem-solving in the realm of artificial intelligence. Its versatility makes it a valuable resource for researchers and practitioners alike, driving innovation in AI-driven mathematics.
Description
The NVIDIA Llama Nemotron family comprises a series of sophisticated language models that are fine-tuned for complex reasoning and a wide array of agentic AI applications. These models shine in areas such as advanced scientific reasoning, complex mathematics, coding, following instructions, and executing tool calls. They are designed for versatility, making them suitable for deployment on various platforms, including data centers and personal computers, and feature the ability to switch reasoning capabilities on or off, which helps to lower inference costs during less demanding tasks. The Llama Nemotron series consists of models specifically designed to meet different deployment requirements. Leveraging the foundation of Llama models and enhanced through NVIDIA's post-training techniques, these models boast a notable accuracy improvement of up to 20% compared to their base counterparts while also achieving inference speeds that can be up to five times faster than other leading open reasoning models. This remarkable efficiency allows for the management of more intricate reasoning challenges, boosts decision-making processes, and significantly lowers operational expenses for businesses. Consequently, the Llama Nemotron models represent a significant advancement in the field of AI, particularly for organizations seeking to integrate cutting-edge reasoning capabilities into their systems.
API Access
Has API
API Access
Has API
Integrations
BLACKBOX AI
Llama
NVIDIA AI Data Platform
NVIDIA AI Enterprise
NVIDIA Blueprints
NVIDIA DGX Cloud
NVIDIA NIM
NVIDIA NeMo
Integrations
BLACKBOX AI
Llama
NVIDIA AI Data Platform
NVIDIA AI Enterprise
NVIDIA Blueprints
NVIDIA DGX Cloud
NVIDIA NIM
NVIDIA NeMo
Pricing Details
Free
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
DeepSeek
Founded
2023
Country
China
Website
deepseek.com
Vendor Details
Company Name
NVIDIA
Founded
1993
Country
United States
Website
www.nvidia.com/en-us/ai-data-science/foundation-models/llama-nemotron/