Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Keep a close eye on your data health and the performance of your pipelines. Achieve comprehensive oversight for pipelines utilizing cloud-native technologies such as Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. This observability platform is specifically designed for Data Engineers. As the challenges in data engineering continue to escalate due to increasing demands from business stakeholders, Databand offers a solution to help you keep pace. With the rise in the number of pipelines comes greater complexity. Data engineers are now handling more intricate infrastructures than they ever have before while also aiming for quicker release cycles. This environment makes it increasingly difficult to pinpoint the reasons behind process failures, delays, and the impact of modifications on data output quality. Consequently, data consumers often find themselves frustrated by inconsistent results, subpar model performance, and slow data delivery. A lack of clarity regarding the data being provided or the origins of failures fosters ongoing distrust. Furthermore, pipeline logs, errors, and data quality metrics are often gathered and stored in separate, isolated systems, complicating the troubleshooting process. To address these issues effectively, a unified observability approach is essential for enhancing trust and performance in data operations.
Description
Examine the usage of your data assets, focusing on aspects like popularity, utilization, and schema coverage. Gain vital insights into your data assets, including their quality and usage metrics. You can easily locate and filter the necessary data by leveraging metadata tags and descriptions. Additionally, these insights will help you drive data governance and establish clear ownership within your organization. By implementing a streamlined lineage from data lakes to warehouses, you can enhance collaboration and accountability. An automatically generated field-level lineage map provides a comprehensive view of your entire data ecosystem. Moreover, anomaly detection systems adapt by learning from your data trends and seasonal variations, ensuring automatic backfilling with historical data. Thresholds driven by machine learning are specifically tailored for each data segment, relying on actual data rather than just metadata to ensure accuracy and relevance. This holistic approach empowers organizations to better manage their data landscape effectively.
API Access
Has API
API Access
Has API
Integrations
Amazon Redshift
Amazon S3
Databricks Data Intelligence Platform
Google Cloud BigQuery
Google Cloud Storage
PostgreSQL
Snowflake
Amazon EMR
Amazon Kinesis
Amazon Web Services (AWS)
Integrations
Amazon Redshift
Amazon S3
Databricks Data Intelligence Platform
Google Cloud BigQuery
Google Cloud Storage
PostgreSQL
Snowflake
Amazon EMR
Amazon Kinesis
Amazon Web Services (AWS)
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
IBM
Founded
1911
Country
United States
Website
www.ibm.com/products/databand
Vendor Details
Company Name
Validio
Founded
2019
Website
validio.io
Product Features
Data Lineage
Database Change Impact Analysis
Filter Lineage Links
Implicit Connection Discovery
Lineage Object Filtering
Object Lineage Tracing
Point-in-Time Visibility
User/Client/Target Connection Visibility
Visual & Text Lineage View
Data Preparation
Collaboration Tools
Data Access
Data Blending
Data Cleansing
Data Governance
Data Mashup
Data Modeling
Data Transformation
Machine Learning
Visual User Interface
Data Quality
Address Validation
Data Deduplication
Data Discovery
Data Profililng
Master Data Management
Match & Merge
Metadata Management
Data Visualization
Analytics
Content Management
Dashboard Creation
Filtered Views
OLAP
Relational Display
Simulation Models
Visual Discovery
Product Features
Data Lineage
Database Change Impact Analysis
Filter Lineage Links
Implicit Connection Discovery
Lineage Object Filtering
Object Lineage Tracing
Point-in-Time Visibility
User/Client/Target Connection Visibility
Visual & Text Lineage View
Data Quality
Address Validation
Data Deduplication
Data Discovery
Data Profililng
Master Data Management
Match & Merge
Metadata Management