Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Data Version Control (DVC) is an open-source system specifically designed for managing version control in data science and machine learning initiatives. It provides a Git-like interface that allows users to systematically organize data, models, and experiments, making it easier to oversee and version various types of files such as images, audio, video, and text. This system helps structure the machine learning modeling process into a reproducible workflow, ensuring consistency in experimentation. DVC's integration with existing software engineering tools is seamless, empowering teams to articulate every facet of their machine learning projects through human-readable metafiles that detail data and model versions, pipelines, and experiments. This methodology promotes adherence to best practices and the use of well-established engineering tools, thus bridging the gap between the realms of data science and software development. By utilizing Git, DVC facilitates the versioning and sharing of complete machine learning projects, encompassing source code, configurations, parameters, metrics, data assets, and processes by committing the DVC metafiles as placeholders. Furthermore, its user-friendly approach encourages collaboration among team members, enhancing productivity and innovation within projects.
Description
lakeFS allows you to control your data lake similarly to how you manage your source code, facilitating parallel pipelines for experimentation as well as continuous integration and deployment for your data. This platform streamlines the workflows of engineers, data scientists, and analysts who are driving innovation through data. As an open-source solution, lakeFS enhances the resilience and manageability of object-storage-based data lakes. With lakeFS, you can execute reliable, atomic, and versioned operations on your data lake, encompassing everything from intricate ETL processes to advanced data science and analytics tasks. It is compatible with major cloud storage options, including AWS S3, Azure Blob Storage, and Google Cloud Storage (GCS). Furthermore, lakeFS seamlessly integrates with a variety of modern data frameworks such as Spark, Hive, AWS Athena, and Presto, thanks to its API compatibility with S3. The platform features a Git-like model for branching and committing that can efficiently scale to handle exabytes of data while leveraging the storage capabilities of S3, GCS, or Azure Blob. In addition, lakeFS empowers teams to collaborate more effectively by allowing multiple users to work on the same dataset without conflicts, making it an invaluable tool for data-driven organizations.
API Access
Has API
API Access
Has API
Integrations
Amazon Athena
Amazon Kinesis
Amazon S3
Amazon SES
Amazon Web Services (AWS)
Apache Airflow
Apache Flink
Apache Hive
Apache Spark
Astro
Integrations
Amazon Athena
Amazon Kinesis
Amazon S3
Amazon SES
Amazon Web Services (AWS)
Apache Airflow
Apache Flink
Apache Hive
Apache Spark
Astro
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
iterative.ai
Founded
2018
Country
United States
Website
dvc.org
Vendor Details
Company Name
Treeverse
Founded
2020
Country
Israel
Website
lakefs.io
Product Features
Product Features
Data Management
Customer Data
Data Analysis
Data Capture
Data Integration
Data Migration
Data Quality Control
Data Security
Information Governance
Master Data Management
Match & Merge