Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

CoreWeave stands out as a cloud infrastructure service that focuses on GPU-centric computing solutions specifically designed for artificial intelligence applications. Their platform delivers scalable, high-performance GPU clusters that enhance both training and inference processes for AI models, catering to sectors such as machine learning, visual effects, and high-performance computing. In addition to robust GPU capabilities, CoreWeave offers adaptable storage, networking, and managed services that empower AI-focused enterprises, emphasizing reliability, cost-effectiveness, and top-tier security measures. This versatile platform is widely adopted by AI research facilities, labs, and commercial entities aiming to expedite their advancements in artificial intelligence technology. By providing an infrastructure that meets the specific demands of AI workloads, CoreWeave plays a crucial role in driving innovation across various industries.

Description

AI Infrastructure Virtualization Software. Enhance oversight and management of AI tasks to optimize GPU usage. Run:AI has pioneered the first virtualization layer specifically designed for deep learning training models. By decoupling workloads from the underlying hardware, Run:AI establishes a collective resource pool that can be allocated as needed, ensuring that valuable GPU resources are fully utilized. This approach allows for effective management of costly GPU allocations. With Run:AI’s scheduling system, IT departments can direct, prioritize, and synchronize computational resources for data science projects with overarching business objectives. Advanced tools for monitoring, job queuing, and the automatic preemption of tasks according to priority levels provide IT with comprehensive control over GPU resource utilization. Furthermore, by forming a versatile ‘virtual resource pool,’ IT executives can gain insights into their entire infrastructure’s capacity and usage, whether hosted on-site or in the cloud, thus facilitating more informed decision-making. This comprehensive visibility ultimately drives efficiency and enhances resource management.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Conductor
FluidStack
GPURich
HPE Ezmeral
Kubernetes
Magic Bullet

Integrations

Conductor
FluidStack
GPURich
HPE Ezmeral
Kubernetes
Magic Bullet

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

CoreWeave

Founded

2017

Country

United States

Website

www.coreweave.com

Vendor Details

Company Name

Run:AI

Founded

2018

Country

Israel

Website

www.run.ai/

Product Features

Infrastructure-as-a-Service (IaaS)

Analytics / Reporting
Configuration Management
Data Migration
Data Security
Load Balancing
Log Access
Network Monitoring
Performance Monitoring
SLA Monitoring

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Virtualization

Archiving & Retention
Capacity Monitoring
Data Mobility
Desktop Virtualization
Disaster Recovery
Namespace Management
Performance Management
Version Control
Virtual Machine Monitoring

Alternatives

Alternatives