Best NVIDIA Run:ai Alternatives in 2026

Find the top alternatives to NVIDIA Run:ai currently available. Compare ratings, reviews, pricing, and features of NVIDIA Run:ai alternatives in 2026. Slashdot lists the best NVIDIA Run:ai alternatives on the market that offer competing products that are similar to NVIDIA Run:ai. Sort through NVIDIA Run:ai alternatives below to make the best choice for your needs

  • 1
    Vertex AI Reviews
    See Software
    Learn More
    Compare Both
    Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
  • 2
    Google Compute Engine Reviews
    See Software
    Learn More
    Compare Both
    Compute Engine (IaaS), a platform from Google that allows organizations to create and manage cloud-based virtual machines, is an infrastructure as a services (IaaS). Computing infrastructure in predefined sizes or custom machine shapes to accelerate cloud transformation. General purpose machines (E2, N1,N2,N2D) offer a good compromise between price and performance. Compute optimized machines (C2) offer high-end performance vCPUs for compute-intensive workloads. Memory optimized (M2) systems offer the highest amount of memory and are ideal for in-memory database applications. Accelerator optimized machines (A2) are based on A100 GPUs, and are designed for high-demanding applications. Integrate Compute services with other Google Cloud Services, such as AI/ML or data analytics. Reservations can help you ensure that your applications will have the capacity needed as they scale. You can save money by running Compute using the sustained-use discount, and you can even save more when you use the committed-use discount.
  • 3
    RunPod Reviews
    See Software
    Learn More
    Compare Both
    RunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference.
  • 4
    Intel Tiber AI Cloud Reviews
    The Intel® Tiber™ AI Cloud serves as a robust platform tailored to efficiently scale artificial intelligence workloads through cutting-edge computing capabilities. Featuring specialized AI hardware, including the Intel Gaudi AI Processor and Max Series GPUs, it enhances the processes of model training, inference, and deployment. Aimed at enterprise-level applications, this cloud offering allows developers to create and refine models using well-known libraries such as PyTorch. Additionally, with a variety of deployment choices, secure private cloud options, and dedicated expert assistance, Intel Tiber™ guarantees smooth integration and rapid deployment while boosting model performance significantly. This comprehensive solution is ideal for organizations looking to harness the full potential of AI technologies.
  • 5
    CoreWeave Reviews
    CoreWeave stands out as a cloud infrastructure service that focuses on GPU-centric computing solutions specifically designed for artificial intelligence applications. Their platform delivers scalable, high-performance GPU clusters that enhance both training and inference processes for AI models, catering to sectors such as machine learning, visual effects, and high-performance computing. In addition to robust GPU capabilities, CoreWeave offers adaptable storage, networking, and managed services that empower AI-focused enterprises, emphasizing reliability, cost-effectiveness, and top-tier security measures. This versatile platform is widely adopted by AI research facilities, labs, and commercial entities aiming to expedite their advancements in artificial intelligence technology. By providing an infrastructure that meets the specific demands of AI workloads, CoreWeave plays a crucial role in driving innovation across various industries.
  • 6
    NVIDIA GPU-Optimized AMI Reviews
    The NVIDIA GPU-Optimized AMI serves as a virtual machine image designed to enhance your GPU-accelerated workloads in Machine Learning, Deep Learning, Data Science, and High-Performance Computing (HPC). By utilizing this AMI, you can quickly launch a GPU-accelerated EC2 virtual machine instance, complete with a pre-installed Ubuntu operating system, GPU driver, Docker, and the NVIDIA container toolkit, all within a matter of minutes. This AMI simplifies access to NVIDIA's NGC Catalog, which acts as a central hub for GPU-optimized software, enabling users to easily pull and run performance-tuned, thoroughly tested, and NVIDIA-certified Docker containers. The NGC catalog offers complimentary access to a variety of containerized applications for AI, Data Science, and HPC, along with pre-trained models, AI SDKs, and additional resources, allowing data scientists, developers, and researchers to concentrate on creating and deploying innovative solutions. Additionally, this GPU-optimized AMI is available at no charge, with an option for users to purchase enterprise support through NVIDIA AI Enterprise. For further details on obtaining support for this AMI, please refer to the section labeled 'Support Information' below. Moreover, leveraging this AMI can significantly streamline the development process for projects requiring intensive computational resources.
  • 7
    Together AI Reviews

    Together AI

    Together AI

    $0.0001 per 1k tokens
    Together AI offers a cloud platform purpose-built for developers creating AI-native applications, providing optimized GPU infrastructure for training, fine-tuning, and inference at unprecedented scale. Its environment is engineered to remain stable even as customers push workloads to trillions of tokens, ensuring seamless reliability in production. By continuously improving inference runtime performance and GPU utilization, Together AI delivers a cost-effective foundation for companies building frontier-level AI systems. The platform features a rich model library including open-source, specialized, and multimodal models for chat, image generation, video creation, and coding tasks. Developers can replace closed APIs effortlessly through OpenAI-compatible endpoints. Innovations such as ATLAS, FlashAttention, Flash Decoding, and Mixture of Agents highlight Together AI’s strong research contributions. Instant GPU clusters allow teams to scale from prototypes to distributed workloads in minutes. AI-native companies rely on Together AI to break performance barriers and accelerate time to market.
  • 8
    NetApp AIPod Reviews
    NetApp AIPod presents a holistic AI infrastructure solution aimed at simplifying the deployment and oversight of artificial intelligence workloads. By incorporating NVIDIA-validated turnkey solutions like the NVIDIA DGX BasePOD™ alongside NetApp's cloud-integrated all-flash storage, AIPod brings together analytics, training, and inference into one unified and scalable system. This integration allows organizations to efficiently execute AI workflows, encompassing everything from model training to fine-tuning and inference, while also prioritizing data management and security. With a preconfigured infrastructure tailored for AI operations, NetApp AIPod minimizes complexity, speeds up the path to insights, and ensures smooth integration in hybrid cloud settings. Furthermore, its design empowers businesses to leverage AI capabilities more effectively, ultimately enhancing their competitive edge in the market.
  • 9
    Ori GPU Cloud Reviews
    Deploy GPU-accelerated instances that can be finely tuned to suit your AI requirements and financial plan. Secure access to thousands of GPUs within a cutting-edge AI data center, ideal for extensive training and inference operations. The trend in the AI landscape is clearly leaning towards GPU cloud solutions, allowing for the creation and deployment of innovative models while alleviating the challenges associated with infrastructure management and resource limitations. AI-focused cloud providers significantly surpass conventional hyperscalers in terms of availability, cost efficiency, and the ability to scale GPU usage for intricate AI tasks. Ori boasts a diverse array of GPU types, each designed to meet specific processing demands, which leads to a greater availability of high-performance GPUs compared to standard cloud services. This competitive edge enables Ori to deliver increasingly attractive pricing each year, whether for pay-as-you-go instances or dedicated servers. In comparison to the hourly or usage-based rates of traditional cloud providers, our GPU computing expenses are demonstrably lower for running extensive AI operations. Additionally, this cost-effectiveness makes Ori a compelling choice for businesses seeking to optimize their AI initiatives.
  • 10
    Pipeshift Reviews
    Pipeshift is an adaptable orchestration platform developed to streamline the creation, deployment, and scaling of open-source AI components like embeddings, vector databases, and various models for language, vision, and audio, whether in cloud environments or on-premises settings. It provides comprehensive orchestration capabilities, ensuring smooth integration and oversight of AI workloads while being fully cloud-agnostic, thus allowing users greater freedom in their deployment choices. Designed with enterprise-level security features, Pipeshift caters specifically to the demands of DevOps and MLOps teams who seek to implement robust production pipelines internally, as opposed to relying on experimental API services that might not prioritize privacy. Among its notable functionalities are an enterprise MLOps dashboard for overseeing multiple AI workloads, including fine-tuning, distillation, and deployment processes; multi-cloud orchestration equipped with automatic scaling, load balancing, and scheduling mechanisms for AI models; and effective management of Kubernetes clusters. Furthermore, Pipeshift enhances collaboration among teams by providing tools that facilitate the monitoring and adjustment of AI models in real-time.
  • 11
    NVIDIA DGX Cloud Reviews
    The NVIDIA DGX Cloud provides an AI infrastructure as a service that simplifies the deployment of large-scale AI models and accelerates innovation. By offering a comprehensive suite of tools for machine learning, deep learning, and HPC, this platform enables organizations to run their AI workloads efficiently on the cloud. With seamless integration into major cloud services, it offers the scalability, performance, and flexibility necessary for tackling complex AI challenges, all while eliminating the need for managing on-premise hardware.
  • 12
    Amazon EC2 Capacity Blocks for ML Reviews
    Amazon EC2 Capacity Blocks for Machine Learning allow users to secure accelerated computing instances within Amazon EC2 UltraClusters specifically for their machine learning tasks. This service encompasses a variety of instance types, including Amazon EC2 P5en, P5e, P5, and P4d, which utilize NVIDIA H200, H100, and A100 Tensor Core GPUs, along with Trn2 and Trn1 instances that leverage AWS Trainium. Users can reserve these instances for periods of up to six months, with cluster sizes ranging from a single instance to 64 instances, translating to a maximum of 512 GPUs or 1,024 Trainium chips, thus providing ample flexibility to accommodate diverse machine learning workloads. Additionally, reservations can be arranged as much as eight weeks ahead of time. By operating within Amazon EC2 UltraClusters, Capacity Blocks facilitate low-latency and high-throughput network connectivity, which is essential for efficient distributed training processes. This configuration guarantees reliable access to high-performance computing resources, empowering you to confidently plan your machine learning projects, conduct experiments, develop prototypes, and effectively handle anticipated increases in demand for machine learning applications. Furthermore, this strategic approach not only enhances productivity but also optimizes resource utilization for varying project scales.
  • 13
    Replicate Reviews
    Replicate is a comprehensive platform designed to help developers and businesses seamlessly run, fine-tune, and deploy machine learning models with just a few lines of code. It hosts thousands of community-contributed models that support diverse use cases such as image and video generation, speech synthesis, music creation, and text generation. Users can enhance model performance by fine-tuning models with their own datasets, enabling highly specialized AI applications. The platform supports custom model deployment through Cog, an open-source tool that automates packaging and deployment on cloud infrastructure while managing scaling transparently. Replicate’s pricing model is usage-based, ensuring customers pay only for the compute time they consume, with support for a variety of GPU and CPU options. The system provides built-in monitoring and logging capabilities to track model performance and troubleshoot predictions. Major companies like Buzzfeed, Unsplash, and Character.ai use Replicate to power their AI features. Replicate’s goal is to democratize access to scalable, production-ready machine learning infrastructure, making AI deployment accessible even to non-experts.
  • 14
    Lambda Reviews
    Lambda is building the cloud designed for superintelligence by delivering integrated AI factories that combine dense power, liquid cooling, and next-generation NVIDIA compute into turnkey systems. Its platform supports everything from rapid prototyping on single GPU instances to running massive distributed training jobs across full GB300 NVL72 superclusters. With 1-Click Clusters™, teams can instantly deploy optimized B200 and H100 clusters prepared for production-grade AI workloads. Lambda’s shared-nothing, single-tenant security model ensures that sensitive data and models remain isolated at the hardware level. SOC 2 Type II certification and caged-cluster options make it suitable for mission-critical use cases in enterprise, government, and research. NVIDIA’s latest chips—including the GB300, HGX B300, HGX B200, and H200—give organizations unprecedented computational throughput. Lambda’s infrastructure is built to scale with ambition, capable of supporting workloads ranging from inference to full-scale training of foundation models. For AI teams racing toward the next frontier, Lambda provides the power, security, and reliability needed to push boundaries.
  • 15
    AWS EC2 Trn3 Instances Reviews
    The latest Amazon EC2 Trn3 UltraServers represent AWS's state-of-the-art accelerated computing instances, featuring proprietary Trainium3 AI chips designed specifically for optimal performance in deep-learning training and inference tasks. These UltraServers come in two variants: the "Gen1," which is equipped with 64 Trainium3 chips, and the "Gen2," offering up to 144 Trainium3 chips per server. The Gen2 variant boasts an impressive capability of delivering 362 petaFLOPS of dense MXFP8 compute, along with 20 TB of HBM memory and an astonishing 706 TB/s of total memory bandwidth, positioning it among the most powerful AI computing platforms available. To facilitate seamless interconnectivity, a cutting-edge "NeuronSwitch-v1" fabric is employed, enabling all-to-all communication patterns that are crucial for large model training, mixture-of-experts frameworks, and extensive distributed training setups. This technological advancement in the architecture underscores AWS's commitment to pushing the boundaries of AI performance and efficiency.
  • 16
    Oblivus Reviews

    Oblivus

    Oblivus

    $0.29 per hour
    Our infrastructure is designed to fulfill all your computing needs, whether you require a single GPU or thousands, or just one vCPU to a vast array of tens of thousands of vCPUs; we have you fully covered. Our resources are always on standby to support your requirements, anytime you need them. With our platform, switching between GPU and CPU instances is incredibly simple. You can easily deploy, adjust, and scale your instances to fit your specific needs without any complications. Enjoy exceptional machine learning capabilities without overspending. We offer the most advanced technology at a much more affordable price. Our state-of-the-art GPUs are engineered to handle the demands of your workloads efficiently. Experience computational resources that are specifically designed to accommodate the complexities of your models. Utilize our infrastructure for large-scale inference and gain access to essential libraries through our OblivusAI OS. Furthermore, enhance your gaming experience by taking advantage of our powerful infrastructure, allowing you to play games in your preferred settings while optimizing performance. This flexibility ensures that you can adapt to changing requirements seamlessly.
  • 17
    NVIDIA Confidential Computing Reviews
    NVIDIA Confidential Computing safeguards data while it is actively being processed, ensuring the protection of AI models and workloads during execution by utilizing hardware-based trusted execution environments integrated within the NVIDIA Hopper and Blackwell architectures, as well as compatible platforms. This innovative solution allows businesses to implement AI training and inference seamlessly, whether on-site, in the cloud, or at edge locations, without requiring modifications to the model code, all while maintaining the confidentiality and integrity of both their data and models. Among its notable features are the zero-trust isolation that keeps workloads separate from the host operating system or hypervisor, device attestation that confirms only authorized NVIDIA hardware is executing the code, and comprehensive compatibility with shared or remote infrastructures, catering to ISVs, enterprises, and multi-tenant setups. By protecting sensitive AI models, inputs, weights, and inference processes, NVIDIA Confidential Computing facilitates the execution of high-performance AI applications without sacrificing security or efficiency. This capability empowers organizations to innovate confidently, knowing their proprietary information remains secure throughout the entire operational lifecycle.
  • 18
    Amazon EC2 G5 Instances Reviews
    The Amazon EC2 G5 instances represent the newest generation of NVIDIA GPU-powered instances, designed to cater to a variety of graphics-heavy and machine learning applications. They offer performance improvements of up to three times for graphics-intensive tasks and machine learning inference, while achieving a remarkable 3.3 times increase in performance for machine learning training when compared to the previous G4dn instances. Users can leverage G5 instances for demanding applications such as remote workstations, video rendering, and gaming, enabling them to create high-quality graphics in real time. Additionally, these instances provide machine learning professionals with an efficient and high-performing infrastructure to develop and implement larger, more advanced models in areas like natural language processing, computer vision, and recommendation systems. Notably, G5 instances provide up to three times the graphics performance and a 40% improvement in price-performance ratio relative to G4dn instances. Furthermore, they feature a greater number of ray tracing cores than any other GPU-equipped EC2 instance, making them an optimal choice for developers seeking to push the boundaries of graphical fidelity. With their cutting-edge capabilities, G5 instances are poised to redefine expectations in both gaming and machine learning sectors.
  • 19
    Nscale Reviews
    Nscale is a specialized hyperscaler designed specifically for artificial intelligence, delivering high-performance computing that is fine-tuned for training, fine-tuning, and demanding workloads. Our vertically integrated approach in Europe spans from data centers to software solutions, ensuring unmatched performance, efficiency, and sustainability in all our offerings. Users can tap into thousands of customizable GPUs through our advanced AI cloud platform, enabling significant cost reductions and revenue growth while optimizing AI workload management. The platform is crafted to facilitate a smooth transition from development to production, whether employing Nscale's internal AI/ML tools or integrating your own. Users can also explore the Nscale Marketplace, which provides access to a wide array of AI/ML tools and resources that support effective and scalable model creation and deployment. Additionally, our serverless architecture allows for effortless and scalable AI inference, eliminating the hassle of infrastructure management. This system dynamically adjusts to demand, guaranteeing low latency and economical inference for leading generative AI models, ultimately enhancing user experience and operational efficiency. With Nscale, organizations can focus on innovation while we handle the complexities of AI infrastructure.
  • 20
    GMI Cloud Reviews

    GMI Cloud

    GMI Cloud

    $2.50 per hour
    GMI Cloud empowers teams to build advanced AI systems through a high-performance GPU cloud that removes traditional deployment barriers. Its Inference Engine 2.0 enables instant model deployment, automated scaling, and reliable low-latency execution for mission-critical applications. Model experimentation is made easier with a growing library of top open-source models, including DeepSeek R1 and optimized Llama variants. The platform’s containerized ecosystem, powered by the Cluster Engine, simplifies orchestration and ensures consistent performance across large workloads. Users benefit from enterprise-grade GPUs, high-throughput InfiniBand networking, and Tier-4 data centers designed for global reliability. With built-in monitoring and secure access management, collaboration becomes more seamless and controlled. Real-world success stories highlight the platform’s ability to cut costs while increasing throughput dramatically. Overall, GMI Cloud delivers an infrastructure layer that accelerates AI development from prototype to production.
  • 21
    Phala Reviews
    Phala provides a confidential compute cloud that secures AI workloads using TEEs and hardware-level encryption to protect both models and data. The platform makes it possible to run sensitive AI tasks without exposing information to operators, operating systems, or external threats. With a library of ready-to-deploy confidential AI models—including options from OpenAI, Google, Meta, DeepSeek, and Qwen—teams can achieve private, high-performance inference instantly. Phala’s GPU TEE technology delivers nearly native compute speeds across H100, H200, and B200 chips while guaranteeing full isolation and verifiability. Developers can deploy workflows through Phala Cloud using simple Docker or Kubernetes setups, aided by automatic environment encryption and real-time attestation. Phala meets stringent enterprise requirements, offering SOC 2 Type II compliance, HIPAA-ready infrastructure, GDPR-aligned processing, and a 99.9% uptime SLA. Companies across finance, healthcare, legal AI, SaaS, and decentralized AI rely on Phala to enable use cases requiring absolute data confidentiality. With rapid adoption and strong performance, Phala delivers the secure foundation needed for trustworthy AI.
  • 22
    Nebius Reviews
    A robust platform optimized for training is equipped with NVIDIA® H100 Tensor Core GPUs, offering competitive pricing and personalized support. Designed to handle extensive machine learning workloads, it allows for efficient multihost training across thousands of H100 GPUs interconnected via the latest InfiniBand network, achieving speeds of up to 3.2Tb/s per host. Users benefit from significant cost savings, with at least a 50% reduction in GPU compute expenses compared to leading public cloud services*, and additional savings are available through GPU reservations and bulk purchases. To facilitate a smooth transition, we promise dedicated engineering support that guarantees effective platform integration while optimizing your infrastructure and deploying Kubernetes. Our fully managed Kubernetes service streamlines the deployment, scaling, and management of machine learning frameworks, enabling multi-node GPU training with ease. Additionally, our Marketplace features a variety of machine learning libraries, applications, frameworks, and tools designed to enhance your model training experience. New users can take advantage of a complimentary one-month trial period, ensuring they can explore the platform's capabilities effortlessly. This combination of performance and support makes it an ideal choice for organizations looking to elevate their machine learning initiatives.
  • 23
    Baseten Reviews
    Baseten is a cloud-native platform focused on delivering robust and scalable AI inference solutions for businesses requiring high reliability. It enables deployment of custom, open-source, and fine-tuned AI models with optimized performance across any cloud or on-premises infrastructure. The platform boasts ultra-low latency, high throughput, and automatic autoscaling capabilities tailored to generative AI tasks like transcription, text-to-speech, and image generation. Baseten’s inference stack includes advanced caching, custom kernels, and decoding techniques to maximize efficiency. Developers benefit from a smooth experience with integrated tooling and seamless workflows, supported by hands-on engineering assistance from the Baseten team. The platform supports hybrid deployments, enabling overflow between private and Baseten clouds for maximum performance. Baseten also emphasizes security, compliance, and operational excellence with 99.99% uptime guarantees. This makes it ideal for enterprises aiming to deploy mission-critical AI products at scale.
  • 24
    Verda Reviews

    Verda

    Verda

    $3.01 per hour
    Verda is a next-generation AI cloud designed for teams building, training, and deploying advanced machine learning models. It delivers powerful GPU infrastructure with no quotas, approvals, or long sales processes. Users can choose from GPU instances, instant multi-node clusters, or fully managed serverless inference. Verda’s Blackwell-powered GPU clusters offer exceptional performance, massive VRAM, and high-speed InfiniBand™ interconnects. The platform is optimized for productivity, allowing developers to deploy, hibernate, and scale resources instantly. Verda supports both short-term experimentation and long-running production workloads. Built-in security, GDPR compliance, and ISO27001 certification ensure enterprise readiness. All datacenters are powered entirely by renewable energy. World-class engineering support is available directly through the platform. Verda delivers a developer-first AI cloud built for speed, flexibility, and reliability.
  • 25
    Amazon EC2 G4 Instances Reviews
    Amazon EC2 G4 instances are specifically designed to enhance the performance of machine learning inference and applications that require high graphics capabilities. Users can select between NVIDIA T4 GPUs (G4dn) and AMD Radeon Pro V520 GPUs (G4ad) according to their requirements. The G4dn instances combine NVIDIA T4 GPUs with bespoke Intel Cascade Lake CPUs, ensuring an optimal mix of computational power, memory, and networking bandwidth. These instances are well-suited for tasks such as deploying machine learning models, video transcoding, game streaming, and rendering graphics. On the other hand, G4ad instances, equipped with AMD Radeon Pro V520 GPUs and 2nd-generation AMD EPYC processors, offer a budget-friendly option for handling graphics-intensive workloads. Both instance types utilize Amazon Elastic Inference, which permits users to add economical GPU-powered inference acceleration to Amazon EC2, thereby lowering costs associated with deep learning inference. They come in a range of sizes tailored to meet diverse performance demands and seamlessly integrate with various AWS services, including Amazon SageMaker, Amazon ECS, and Amazon EKS. Additionally, this versatility makes G4 instances an attractive choice for organizations looking to leverage cloud-based machine learning and graphics processing capabilities.
  • 26
    NetMind AI Reviews
    NetMind.AI is an innovative decentralized computing platform and AI ecosystem aimed at enhancing global AI development. It capitalizes on the untapped GPU resources available around the globe, making AI computing power affordable and accessible for individuals, businesses, and organizations of varying scales. The platform offers diverse services like GPU rentals, serverless inference, and a comprehensive AI ecosystem that includes data processing, model training, inference, and agent development. Users can take advantage of competitively priced GPU rentals and effortlessly deploy their models using on-demand serverless inference, along with accessing a broad range of open-source AI model APIs that deliver high-throughput and low-latency performance. Additionally, NetMind.AI allows contributors to integrate their idle GPUs into the network, earning NetMind Tokens (NMT) as a form of reward. These tokens are essential for facilitating transactions within the platform, enabling users to pay for various services, including training, fine-tuning, inference, and GPU rentals. Ultimately, NetMind.AI aims to democratize access to AI resources, fostering a vibrant community of contributors and users alike.
  • 27
    Foundry Reviews
    Foundry represents a revolutionary type of public cloud, driven by an orchestration platform that simplifies access to AI computing akin to the ease of flipping a switch. Dive into the impactful features of our GPU cloud services that are engineered for optimal performance and unwavering reliability. Whether you are overseeing training processes, catering to client needs, or adhering to research timelines, our platform addresses diverse demands. Leading companies have dedicated years to developing infrastructure teams that create advanced cluster management and workload orchestration solutions to minimize the complexities of hardware management. Foundry democratizes this technology, allowing all users to take advantage of computational power without requiring a large-scale team. In the present GPU landscape, resources are often allocated on a first-come, first-served basis, and pricing can be inconsistent across different vendors, creating challenges during peak demand periods. However, Foundry utilizes a sophisticated mechanism design that guarantees superior price performance compared to any competitor in the market. Ultimately, our goal is to ensure that every user can harness the full potential of AI computing without the usual constraints associated with traditional setups.
  • 28
    Crusoe Reviews
    Crusoe delivers a cloud infrastructure tailored for artificial intelligence tasks, equipped with cutting-edge GPU capabilities and top-tier data centers. This platform is engineered for AI-centric computing, showcasing high-density racks alongside innovative direct liquid-to-chip cooling to enhance overall performance. Crusoe’s infrastructure guarantees dependable and scalable AI solutions through features like automated node swapping and comprehensive monitoring, complemented by a dedicated customer success team that assists enterprises in rolling out production-level AI workloads. Furthermore, Crusoe emphasizes environmental sustainability by utilizing clean, renewable energy sources, which enables them to offer economical services at competitive pricing. With a commitment to excellence, Crusoe continuously evolves its offerings to meet the dynamic needs of the AI landscape.
  • 29
    NVIDIA DGX Cloud Lepton Reviews
    NVIDIA DGX Cloud Lepton is an advanced AI platform that facilitates connections for developers to a worldwide network of GPU computing resources across various cloud providers, all through a singular interface. It provides a cohesive experience for discovering and leveraging GPU capabilities, complemented by integrated AI services that enhance the deployment lifecycle across multiple cloud environments. With immediate access to NVIDIA's accelerated APIs, developers can begin their projects using serverless endpoints and prebuilt NVIDIA Blueprints, along with GPU-enabled computing. When scaling becomes necessary, DGX Cloud Lepton ensures smooth customization and deployment through its expansive global network of GPU cloud providers. Furthermore, it allows for effortless deployment across any GPU cloud, enabling AI applications to operate within multi-cloud and hybrid settings while minimizing operational complexities, and it leverages integrated services designed for inference, testing, and training workloads. This versatility ultimately empowers developers to focus on innovation without worrying about the underlying infrastructure.
  • 30
    IREN Cloud Reviews
    IREN’s AI Cloud is a cutting-edge GPU cloud infrastructure that utilizes NVIDIA's reference architecture along with a high-speed, non-blocking InfiniBand network capable of 3.2 TB/s, specifically engineered for demanding AI training and inference tasks through its bare-metal GPU clusters. This platform accommodates a variety of NVIDIA GPU models, providing ample RAM, vCPUs, and NVMe storage to meet diverse computational needs. Fully managed and vertically integrated by IREN, the service ensures clients benefit from operational flexibility, robust reliability, and comprehensive 24/7 in-house support. Users gain access to performance metrics monitoring, enabling them to optimize their GPU expenditures while maintaining secure and isolated environments through private networking and tenant separation. The platform empowers users to deploy their own data, models, and frameworks such as TensorFlow, PyTorch, and JAX, alongside container technologies like Docker and Apptainer, all while granting root access without any limitations. Additionally, it is finely tuned to accommodate the scaling requirements of complex applications, including the fine-tuning of extensive language models, ensuring efficient resource utilization and exceptional performance for sophisticated AI projects.
  • 31
    AWS Inferentia Reviews
    AWS Inferentia accelerators, engineered by AWS, aim to provide exceptional performance while minimizing costs for deep learning (DL) inference tasks. The initial generation of AWS Inferentia accelerators supports Amazon Elastic Compute Cloud (Amazon EC2) Inf1 instances, boasting up to 2.3 times greater throughput and a 70% reduction in cost per inference compared to similar GPU-based Amazon EC2 instances. Numerous companies, such as Airbnb, Snap, Sprinklr, Money Forward, and Amazon Alexa, have embraced Inf1 instances and experienced significant advantages in both performance and cost. Each first-generation Inferentia accelerator is equipped with 8 GB of DDR4 memory along with a substantial amount of on-chip memory. The subsequent Inferentia2 model enhances capabilities by providing 32 GB of HBM2e memory per accelerator, quadrupling the total memory and decoupling the memory bandwidth, which is ten times greater than its predecessor. This evolution in technology not only optimizes the processing power but also significantly improves the efficiency of deep learning applications across various sectors.
  • 32
    Bright Cluster Manager Reviews
    Bright Cluster Manager offers a variety of machine learning frameworks including Torch, Tensorflow and Tensorflow to simplify your deep-learning projects. Bright offers a selection the most popular Machine Learning libraries that can be used to access datasets. These include MLPython and NVIDIA CUDA Deep Neural Network Library (cuDNN), Deep Learning GPU Trainer System (DIGITS), CaffeOnSpark (a Spark package that allows deep learning), and MLPython. Bright makes it easy to find, configure, and deploy all the necessary components to run these deep learning libraries and frameworks. There are over 400MB of Python modules to support machine learning packages. We also include the NVIDIA hardware drivers and CUDA (parallel computer platform API) drivers, CUB(CUDA building blocks), NCCL (library standard collective communication routines).
  • 33
    Atlas Cloud Reviews
    Atlas Cloud is an all-in-one AI inference platform designed to eliminate the complexity of managing multiple model providers. It enables developers to run text, image, video, audio, and multimodal AI workloads through a single, unified API. The platform offers access to more than 300 cutting-edge, production-ready models from industry-leading AI labs. Developers can instantly test, compare, and deploy models using the Atlas Playground without setup friction. Atlas Cloud delivers enterprise-grade performance with optimized infrastructure built for scale and reliability. Its pricing model helps reduce AI costs without sacrificing quality or throughput. Serverless inference, agent-based solutions, and GPU cloud services provide flexible deployment options. Built-in integrations and SDKs make implementation fast across multiple programming languages. Atlas Cloud maintains high uptime and consistent performance under heavy workloads. It empowers teams to move from experimentation to production with confidence.
  • 34
    Hyperbolic Reviews
    Hyperbolic is an accessible AI cloud platform focused on making artificial intelligence available to all by offering cost-effective and scalable GPU resources along with AI services. By harnessing worldwide computing capabilities, Hyperbolic empowers businesses, researchers, data centers, and individuals to utilize and monetize GPU resources at significantly lower prices compared to conventional cloud service providers. Their goal is to cultivate a cooperative AI environment that promotes innovation free from the burdens of exorbitant computational costs. This approach not only enhances accessibility but also encourages a diverse range of participants to contribute to the advancement of AI technologies.
  • 35
    Aligned Reviews
    Aligned is a collaborative platform aimed at enhancing interactions between customers and businesses, functioning as both a digital sales room and a client portal to streamline sales and customer success efforts. It empowers go-to-market teams to navigate intricate deals, foster buyer engagement, and accelerate the onboarding process for clients. By unifying all decision-making resources in a single collaborative space, it allows account executives to effectively prepare advocates for internal support, engage a broader range of stakeholders, and maintain oversight through mutual action plans. Customer success managers can leverage Aligned to tailor onboarding experiences, ensuring a seamless and effective customer journey. Key features of Aligned include content sharing, chat capabilities, e-signature functionality, and CRM integration, all presented within an easy-to-use interface that eliminates the need for client logins. The platform is available for free trial without requiring a credit card, and it offers a range of flexible pricing plans to suit various business requirements. Additionally, Aligned's user-friendly design helps to facilitate better communication and collaboration, ultimately driving customer satisfaction and loyalty.
  • 36
    Parasail Reviews

    Parasail

    Parasail

    $0.80 per million tokens
    Parasail is a network designed for deploying AI that offers scalable and cost-effective access to high-performance GPUs tailored for various AI tasks. It features three main services: serverless endpoints for real-time inference, dedicated instances for private model deployment, and batch processing for extensive task management. Users can either deploy open-source models like DeepSeek R1, LLaMA, and Qwen, or utilize their own models, with the platform’s permutation engine optimally aligning workloads with hardware, which includes NVIDIA’s H100, H200, A100, and 4090 GPUs. The emphasis on swift deployment allows users to scale from a single GPU to large clusters in just minutes, providing substantial cost savings, with claims of being up to 30 times more affordable than traditional cloud services. Furthermore, Parasail boasts day-zero availability for new models and features a self-service interface that avoids long-term contracts and vendor lock-in, enhancing user flexibility and control. This combination of features makes Parasail an attractive choice for those looking to leverage high-performance AI capabilities without the usual constraints of cloud computing.
  • 37
    Google Cloud AI Infrastructure Reviews
    Businesses now have numerous options to efficiently train their deep learning and machine learning models without breaking the bank. AI accelerators cater to various scenarios, providing solutions that range from economical inference to robust training capabilities. Getting started is straightforward, thanks to an array of services designed for both development and deployment purposes. Custom-built ASICs known as Tensor Processing Units (TPUs) are specifically designed to train and run deep neural networks with enhanced efficiency. With these tools, organizations can develop and implement more powerful and precise models at a lower cost, achieving faster speeds and greater scalability. A diverse selection of NVIDIA GPUs is available to facilitate cost-effective inference or to enhance training capabilities, whether by scaling up or by expanding out. Furthermore, by utilizing RAPIDS and Spark alongside GPUs, users can execute deep learning tasks with remarkable efficiency. Google Cloud allows users to run GPU workloads while benefiting from top-tier storage, networking, and data analytics technologies that improve overall performance. Additionally, when initiating a VM instance on Compute Engine, users can leverage CPU platforms, which offer a variety of Intel and AMD processors to suit different computational needs. This comprehensive approach empowers businesses to harness the full potential of AI while managing costs effectively.
  • 38
    fal Reviews

    fal

    fal.ai

    $0.00111 per second
    Fal represents a serverless Python environment enabling effortless cloud scaling of your code without the need for infrastructure management. It allows developers to create real-time AI applications with incredibly fast inference times, typically around 120 milliseconds. Explore a variety of pre-built models that offer straightforward API endpoints, making it easy to launch your own AI-driven applications. You can also deploy custom model endpoints, allowing for precise control over factors such as idle timeout, maximum concurrency, and automatic scaling. Utilize widely-used models like Stable Diffusion and Background Removal through accessible APIs, all kept warm at no cost to you—meaning you won’t have to worry about the expense of cold starts. Engage in conversations about our product and contribute to the evolution of AI technology. The platform can automatically expand to utilize hundreds of GPUs and retract back to zero when not in use, ensuring you only pay for compute resources when your code is actively running. To get started with fal, simply import it into any Python project and wrap your existing functions with its convenient decorator, streamlining the development process for AI applications. This flexibility makes fal an excellent choice for both novice and experienced developers looking to harness the power of AI.
  • 39
    Voltage Park Reviews

    Voltage Park

    Voltage Park

    $1.99 per hour
    Voltage Park stands as a pioneer in GPU cloud infrastructure, delivering both on-demand and reserved access to cutting-edge NVIDIA HGX H100 GPUs, which are integrated within Dell PowerEdge XE9680 servers that boast 1TB of RAM and v52 CPUs. Their infrastructure is supported by six Tier 3+ data centers strategically located throughout the U.S., providing unwavering availability and reliability through redundant power, cooling, network, fire suppression, and security systems. A sophisticated 3200 Gbps InfiniBand network ensures swift communication and minimal latency between GPUs and workloads, enhancing overall performance. Voltage Park prioritizes top-notch security and compliance, employing Palo Alto firewalls alongside stringent measures such as encryption, access controls, monitoring, disaster recovery strategies, penetration testing, and periodic audits. With an impressive inventory of 24,000 NVIDIA H100 Tensor Core GPUs at their disposal, Voltage Park facilitates a scalable computing environment, allowing clients to access anywhere from 64 to 8,176 GPUs as needed, thereby accommodating a wide range of workloads and applications. Their commitment to innovation and customer satisfaction positions Voltage Park as a leading choice for businesses seeking advanced GPU solutions.
  • 40
    Qubrid AI Reviews

    Qubrid AI

    Qubrid AI

    $0.68/hour/GPU
    Qubrid AI stands out as a pioneering company in the realm of Artificial Intelligence (AI), dedicated to tackling intricate challenges across various sectors. Their comprehensive software suite features AI Hub, a centralized destination for AI models, along with AI Compute GPU Cloud and On-Prem Appliances, and the AI Data Connector. Users can develop both their own custom models and utilize industry-leading inference models, all facilitated through an intuitive and efficient interface. The platform allows for easy testing and refinement of models, followed by a smooth deployment process that enables users to harness the full potential of AI in their initiatives. With AI Hub, users can commence their AI journey, transitioning seamlessly from idea to execution on a robust platform. The cutting-edge AI Compute system maximizes efficiency by leveraging the capabilities of GPU Cloud and On-Prem Server Appliances, making it easier to innovate and execute next-generation AI solutions. The dedicated Qubrid team consists of AI developers, researchers, and partnered experts, all committed to continually enhancing this distinctive platform to propel advancements in scientific research and applications. Together, they aim to redefine the future of AI technology across multiple domains.
  • 41
    Civo Reviews

    Civo

    Civo

    $250 per month
    Civo is a cloud-native service provider focused on delivering fast, simple, and cost-effective cloud infrastructure for modern applications and AI workloads. The platform features managed Kubernetes clusters with rapid 90-second launch times, helping developers accelerate development cycles and scale with ease. Alongside Kubernetes, Civo offers compute instances, managed databases, object storage, load balancers, and high-performance cloud GPUs powered by NVIDIA A100, including environmentally friendly carbon-neutral options. Their pricing is predictable and pay-as-you-go, ensuring transparency and no surprises for businesses. Civo supports machine learning workloads with fully managed auto-scaling environments starting at $250 per month, eliminating the need for ML or Kubernetes expertise. The platform includes comprehensive dashboards and developer tools, backed by strong compliance certifications such as ISO27001 and SOC2. Civo also invests in community education through its Academy, meetups, and extensive documentation. With trusted partnerships and real-world case studies, Civo helps businesses innovate faster while controlling infrastructure costs.
  • 42
    Thunder Compute Reviews

    Thunder Compute

    Thunder Compute

    $0.27 per hour
    Thunder Compute is an innovative cloud service that abstracts GPUs over TCP, enabling developers to effortlessly transition from CPU-only environments to expansive GPU clusters with a single command. By simulating a direct connection to remote GPUs, it allows CPU-only systems to function as if they possess dedicated GPU resources, all while those physical GPUs are utilized across multiple machines. This technique not only enhances GPU utilization but also lowers expenses by enabling various workloads to share a single GPU through dynamic memory allocation. Developers can conveniently initiate their projects on CPU-centric setups and seamlessly scale up to large GPU clusters with minimal configuration, thus avoiding the costs related to idle computation resources during the development phase. With Thunder Compute, users gain on-demand access to powerful GPUs such as NVIDIA T4, A100 40GB, and A100 80GB, all offered at competitive pricing alongside high-speed networking. The platform fosters an efficient workflow, making it easier for developers to optimize their projects without the complexities typically associated with GPU management.
  • 43
    TensorWave Reviews
    TensorWave is a cloud platform designed for AI and high-performance computing (HPC), exclusively utilizing AMD Instinct Series GPUs to ensure optimal performance. It features a high-bandwidth and memory-optimized infrastructure that seamlessly scales to accommodate even the most rigorous training or inference tasks. Users can access AMD’s leading GPUs in mere seconds, including advanced models like the MI300X and MI325X, renowned for their exceptional memory capacity and bandwidth, boasting up to 256GB of HBM3E and supporting speeds of 6.0TB/s. Additionally, TensorWave's architecture is equipped with UEC-ready functionalities that enhance the next generation of Ethernet for AI and HPC networking, as well as direct liquid cooling systems that significantly reduce total cost of ownership, achieving energy cost savings of up to 51% in data centers. The platform also incorporates high-speed network storage, which provides transformative performance, security, and scalability for AI workflows. Furthermore, it ensures seamless integration with a variety of tools and platforms, accommodating various models and libraries to enhance user experience. TensorWave stands out for its commitment to performance and efficiency in the evolving landscape of AI technology.
  • 44
    Pi Cloud Reviews

    Pi Cloud

    Pi DATACENTERS Pvt. Ltd.

    $240
    Pi Cloud redefines enterprise cloud computing by delivering a platform-agnostic, fully managed ecosystem that bridges private and public cloud environments seamlessly. Supporting Oracle, AWS, Azure, and Google Cloud alongside its own solutions, Pi Cloud ensures flexibility, scalability, and enterprise-grade security under a unified management framework. Businesses benefit from faster integration, simplified deployments, and real-time infrastructure visibility, enabling quicker market entry and stronger performance outcomes. The GPU Cloud service, leveraging NVIDIA A100 hardware, is designed to accelerate AI, machine learning, and advanced data workloads at scale. Pi Cloud also offers tailored private cloud solutions that allow organizations to optimize efficiency, lower total cost of ownership, and maintain control over mission-critical applications. With Pi Managed Services (Pi Care), clients receive proactive IT support, 24/7 monitoring, and transparent monthly pricing, ensuring predictable costs and minimized risk. The platform’s emphasis on innovation, backed by ongoing research and development, ensures that enterprises stay ahead of evolving technology demands. By combining multi-cloud agility with enterprise support, Pi Cloud provides a future-ready foundation for digital transformation.
  • 45
    FluidStack Reviews

    FluidStack

    FluidStack

    $1.49 per month
    Achieve prices that are 3-5 times more competitive than conventional cloud services. FluidStack combines underutilized GPUs from data centers globally to provide unmatched economic advantages in the industry. With just one platform and API, you can deploy over 50,000 high-performance servers in mere seconds. Gain access to extensive A100 and H100 clusters equipped with InfiniBand in just a few days. Utilize FluidStack to train, fine-tune, and launch large language models on thousands of cost-effective GPUs in a matter of minutes. By connecting multiple data centers, FluidStack effectively disrupts monopolistic GPU pricing in the cloud. Experience computing speeds that are five times faster while enhancing cloud efficiency. Instantly tap into more than 47,000 idle servers, all with tier 4 uptime and security, through a user-friendly interface. You can train larger models, set up Kubernetes clusters, render tasks more quickly, and stream content without delays. The setup process requires only one click, allowing for custom image and API deployment in seconds. Additionally, our engineers are available around the clock through Slack, email, or phone, acting as a seamless extension of your team to ensure you receive the support you need. This level of accessibility and assistance can significantly streamline your operations.