Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

ConvNetJS is a JavaScript library designed for training deep learning models, specifically neural networks, directly in your web browser. With just a simple tab open, you can start the training process without needing any software installations, compilers, or even GPUs—it's that hassle-free. The library enables users to create and implement neural networks using JavaScript and was initially developed by @karpathy, but it has since been enhanced through community contributions, which are greatly encouraged. For those who want a quick and easy way to access the library without delving into development, you can download the minified version via the link to convnet-min.js. Alternatively, you can opt to get the latest version from GitHub, where the file you'll likely want is build/convnet-min.js, which includes the complete library. To get started, simply create a basic index.html file in a designated folder and place build/convnet-min.js in the same directory to begin experimenting with deep learning in your browser. This approach allows anyone, regardless of their technical background, to engage with neural networks effortlessly.

Description

The VLFeat open source library offers a range of well-known algorithms focused on computer vision, particularly for tasks such as image comprehension and the extraction and matching of local features. Among its various algorithms are Fisher Vector, VLAD, SIFT, MSER, k-means, hierarchical k-means, the agglomerative information bottleneck, SLIC superpixels, quick shift superpixels, and large scale SVM training, among many others. Developed in C to ensure high performance and broad compatibility, it also has MATLAB interfaces that enhance user accessibility, complemented by thorough documentation. This library is compatible with operating systems including Windows, Mac OS X, and Linux, making it widely usable across different platforms. Additionally, MatConvNet serves as a MATLAB toolbox designed specifically for implementing Convolutional Neural Networks (CNNs) tailored for various computer vision applications. Known for its simplicity and efficiency, MatConvNet is capable of running and training cutting-edge CNNs, with numerous pre-trained models available for tasks such as image classification, segmentation, face detection, and text recognition. The combination of these tools provides a robust framework for researchers and developers in the field of computer vision.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

No details available.

Integrations

No details available.

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

ConvNetJS

Website

cs.stanford.edu/people/karpathy/convnetjs/

Vendor Details

Company Name

VLFeat

Country

United States

Website

www.vlfeat.org/matconvnet/

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Alternatives

Alternatives

Neural Designer Reviews

Neural Designer

Artelnics