Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

ColBERT stands out as a rapid and precise retrieval model, allowing for scalable BERT-based searches across extensive text datasets in mere milliseconds. The model utilizes a method called fine-grained contextual late interaction, which transforms each passage into a matrix of token-level embeddings. During the search process, it generates a separate matrix for each query and efficiently identifies passages that match the query contextually through scalable vector-similarity operators known as MaxSim. This intricate interaction mechanism enables ColBERT to deliver superior performance compared to traditional single-vector representation models while maintaining efficiency with large datasets. The toolkit is equipped with essential components for retrieval, reranking, evaluation, and response analysis, which streamline complete workflows. ColBERT also seamlessly integrates with Pyserini for enhanced retrieval capabilities and supports integrated evaluation for multi-stage processes. Additionally, it features a module dedicated to the in-depth analysis of input prompts and LLM responses, which helps mitigate reliability issues associated with LLM APIs and the unpredictable behavior of Mixture-of-Experts models. Overall, ColBERT represents a significant advancement in the field of information retrieval.

Description

TILDE (Term Independent Likelihood moDEl) serves as a framework for passage re-ranking and expansion, utilizing BERT to boost retrieval effectiveness by merging sparse term matching with advanced contextual representations. The initial version of TILDE calculates term weights across the full BERT vocabulary, which can result in significantly large index sizes. To optimize this, TILDEv2 offers a more streamlined method by determining term weights solely for words found in expanded passages, leading to indexes that are 99% smaller compared to those generated by the original TILDE. This increased efficiency is made possible by employing TILDE as a model for passage expansion, where passages are augmented with top-k terms (such as the top 200) to enhance their overall content. Additionally, it includes scripts that facilitate the indexing of collections, the re-ranking of BM25 results, and the training of models on datasets like MS MARCO, thereby providing a comprehensive toolkit for improving information retrieval tasks. Ultimately, TILDEv2 represents a significant advancement in managing and optimizing passage retrieval systems.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Hugging Face
Python

Integrations

Hugging Face
Python

Pricing Details

Free
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Future Data Systems

Country

United States

Website

github.com/stanford-futuredata/ColBERT

Vendor Details

Company Name

ielab

Country

United States

Website

github.com/ielab/TILDE/tree/main

Product Features

Product Features

Alternatives

RankGPT Reviews

RankGPT

Weiwei Sun

Alternatives

RankLLM Reviews

RankLLM

Castorini
ColBERT Reviews

ColBERT

Future Data Systems
TILDE Reviews

TILDE

ielab