Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Codestral Embed marks Mistral AI's inaugural venture into embedding models, focusing specifically on code and engineered for optimal code retrieval and comprehension. It surpasses other prominent code embedding models in the industry, including Voyage Code 3, Cohere Embed v4.0, and OpenAI’s large embedding model, showcasing its superior performance. This model is capable of generating embeddings with varying dimensions and levels of precision; for example, even at a dimension of 256 and int8 precision, it maintains a competitive edge over rival models. The embeddings are organized by relevance, enabling users to select the top n dimensions, which facilitates an effective balance between quality and cost. Codestral Embed shines particularly in retrieval applications involving real-world code data, excelling in evaluations such as SWE-Bench, which uses actual GitHub issues and their solutions, along with Text2Code (GitHub), which enhances context for tasks like code completion or editing. Its versatility and performance make it a valuable tool for developers looking to leverage advanced code understanding capabilities.
Description
spaCy is crafted to empower users in practical applications, enabling the development of tangible products and the extraction of valuable insights. The library is mindful of your time, striving to minimize any delays in your workflow. Installation is straightforward, and the API is both intuitive and efficient to work with. spaCy is particularly adept at handling large-scale information extraction assignments. Built from the ground up using meticulously managed Cython, it ensures optimal performance. If your project requires processing vast datasets, spaCy is undoubtedly the go-to library. Since its launch in 2015, it has established itself as a benchmark in the industry, supported by a robust ecosystem. Users can select from various plugins, seamlessly integrate with machine learning frameworks, and create tailored components and workflows. It includes features for named entity recognition, part-of-speech tagging, dependency parsing, sentence segmentation, text classification, lemmatization, morphological analysis, entity linking, and much more. Its architecture allows for easy customization, which facilitates adding unique components and attributes. Moreover, it simplifies model packaging, deployment, and the overall management of workflows, making it an invaluable tool for any data-driven project.
API Access
Has API
API Access
Has API
Integrations
Comet LLM
Datasaur
GitHub
Mistral AI
Mistral Code
PyTorch
Spark NLP
Steamship
TeamStation
TensorFlow
Integrations
Comet LLM
Datasaur
GitHub
Mistral AI
Mistral Code
PyTorch
Spark NLP
Steamship
TeamStation
TensorFlow
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Mistral AI
Founded
2023
Country
United States
Website
mistral.ai/news/codestral-embed
Vendor Details
Company Name
spaCy
Founded
2015
Country
United States
Website
spacy.io
Product Features
Product Features
Natural Language Processing
Co-Reference Resolution
In-Database Text Analytics
Named Entity Recognition
Natural Language Generation (NLG)
Open Source Integrations
Parsing
Part-of-Speech Tagging
Sentence Segmentation
Stemming/Lemmatization
Tokenization
Text Mining
Boolean Queries
Document Filtering
Graphical Data Presentation
Language Detection
Predictive Modeling
Sentiment Analysis
Summarization
Tagging
Taxonomy Classification
Text Analysis
Topic Clustering