Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
CodeT5 is an innovative pre-trained encoder-decoder model specifically designed for understanding and generating code. This model is identifier-aware and serves as a unified framework for various coding tasks. The official PyTorch implementation originates from a research paper presented at EMNLP 2021 by Salesforce Research. A notable variant, CodeT5-large-ntp-py, has been fine-tuned to excel in Python code generation, forming the core of our CodeRL approach and achieving groundbreaking results in the APPS Python competition-level program synthesis benchmark. This repository includes the necessary code for replicating the experiments conducted with CodeT5. Pre-trained on an extensive dataset of 8.35 million functions across eight programming languages—namely Python, Java, JavaScript, PHP, Ruby, Go, C, and C#—CodeT5 has demonstrated exceptional performance, attaining state-of-the-art results across 14 different sub-tasks in the code intelligence benchmark known as CodeXGLUE. Furthermore, it is capable of generating code directly from natural language descriptions, showcasing its versatility and effectiveness in coding applications.
Description
TorchMetrics comprises over 90 implementations of metrics designed for PyTorch, along with a user-friendly API that allows for the creation of custom metrics. It provides a consistent interface that enhances reproducibility while minimizing redundant code. The library is suitable for distributed training and has undergone thorough testing to ensure reliability. It features automatic batch accumulation and seamless synchronization across multiple devices. You can integrate TorchMetrics into any PyTorch model or utilize it within PyTorch Lightning for added advantages, ensuring that your data aligns with the same device as your metrics at all times. Additionally, you can directly log Metric objects in Lightning, further reducing boilerplate code. Much like torch.nn, the majority of metrics are available in both class-based and functional formats. The functional versions consist of straightforward Python functions that accept torch.tensors as inputs and yield the corresponding metric as a torch.tensor output. Virtually all functional metrics come with an equivalent class-based metric, providing users with flexible options for implementation. This versatility allows developers to choose the approach that best fits their coding style and project requirements.
API Access
Has API
API Access
Has API
Integrations
C
C#
Go
Java
JavaScript
Lightning AI
PHP
PyTorch
Python
Ruby
Integrations
C
C#
Go
Java
JavaScript
Lightning AI
PHP
PyTorch
Python
Ruby
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Salesforce
Website
github.com/salesforce/CodeT5
Vendor Details
Company Name
TorchMetrics
Country
United States
Website
torchmetrics.readthedocs.io/en/stable/
Product Features
Product Features
Application Development
Access Controls/Permissions
Code Assistance
Code Refactoring
Collaboration Tools
Compatibility Testing
Data Modeling
Debugging
Deployment Management
Graphical User Interface
Mobile Development
No-Code
Reporting/Analytics
Software Development
Source Control
Testing Management
Version Control
Web App Development