Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
CodeT5 is an innovative pre-trained encoder-decoder model specifically designed for understanding and generating code. This model is identifier-aware and serves as a unified framework for various coding tasks. The official PyTorch implementation originates from a research paper presented at EMNLP 2021 by Salesforce Research. A notable variant, CodeT5-large-ntp-py, has been fine-tuned to excel in Python code generation, forming the core of our CodeRL approach and achieving groundbreaking results in the APPS Python competition-level program synthesis benchmark. This repository includes the necessary code for replicating the experiments conducted with CodeT5. Pre-trained on an extensive dataset of 8.35 million functions across eight programming languages—namely Python, Java, JavaScript, PHP, Ruby, Go, C, and C#—CodeT5 has demonstrated exceptional performance, attaining state-of-the-art results across 14 different sub-tasks in the code intelligence benchmark known as CodeXGLUE. Furthermore, it is capable of generating code directly from natural language descriptions, showcasing its versatility and effectiveness in coding applications.
Description
On June 23, 2025, Microsoft unveiled Mu, an innovative 330-million-parameter encoder–decoder language model specifically crafted to enhance the agent experience within Windows environments by effectively translating natural language inquiries into function calls for Settings, all processed on-device via NPUs at a remarkable speed of over 100 tokens per second while ensuring impressive accuracy. By leveraging Phi Silica optimizations, Mu’s encoder–decoder design employs a fixed-length latent representation that significantly reduces both computational demands and memory usage, achieving a 47 percent reduction in first-token latency and a decoding speed that is 4.7 times greater on Qualcomm Hexagon NPUs when compared to other decoder-only models. Additionally, the model benefits from hardware-aware tuning techniques, which include a thoughtful 2/3–1/3 split of encoder and decoder parameters, shared weights for input and output embeddings, Dual LayerNorm, rotary positional embeddings, and grouped-query attention, allowing for swift inference rates exceeding 200 tokens per second on devices such as the Surface Laptop 7, along with sub-500 ms response times for settings-related queries. This combination of features positions Mu as a groundbreaking advancement in on-device language processing capabilities.
API Access
Has API
API Access
Has API
Integrations
C
C#
Go
Java
JavaScript
PHP
Python
Ruby
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Salesforce
Website
github.com/salesforce/CodeT5
Vendor Details
Company Name
Microsoft
Founded
1975
Country
United States
Website
blogs.windows.com/windowsexperience/2025/06/23/introducing-mu-language-model-and-how-it-enabled-the-agent-in-windows-settings/