Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

CodeQwen serves as the coding counterpart to Qwen, which is a series of large language models created by the Qwen team at Alibaba Cloud. Built on a transformer architecture that functions solely as a decoder, this model has undergone extensive pre-training using a vast dataset of code. It showcases robust code generation abilities and demonstrates impressive results across various benchmarking tests. With the capacity to comprehend and generate long contexts of up to 64,000 tokens, CodeQwen accommodates 92 programming languages and excels in tasks such as text-to-SQL queries and debugging. Engaging with CodeQwen is straightforward—you can initiate a conversation with just a few lines of code utilizing transformers. The foundation of this interaction relies on constructing the tokenizer and model using pre-existing methods, employing the generate function to facilitate dialogue guided by the chat template provided by the tokenizer. In alignment with our established practices, we implement the ChatML template tailored for chat models. This model adeptly completes code snippets based on the prompts it receives, delivering responses without the need for any further formatting adjustments, thereby enhancing the user experience. The seamless integration of these elements underscores the efficiency and versatility of CodeQwen in handling diverse coding tasks.

Description

Recent breakthroughs in natural language processing, comprehension, and generation have been greatly influenced by the development of large language models. This research presents a system that employs Ascend 910 AI processors and the MindSpore framework to train a language model exceeding one trillion parameters, specifically 1.085 trillion, referred to as PanGu-{\Sigma}. This model enhances the groundwork established by PanGu-{\alpha} by converting the conventional dense Transformer model into a sparse format through a method known as Random Routed Experts (RRE). Utilizing a substantial dataset of 329 billion tokens, the model was effectively trained using a strategy called Expert Computation and Storage Separation (ECSS), which resulted in a remarkable 6.3-fold improvement in training throughput through the use of heterogeneous computing. Through various experiments, it was found that PanGu-{\Sigma} achieves a new benchmark in zero-shot learning across multiple downstream tasks in Chinese NLP, showcasing its potential in advancing the field. This advancement signifies a major leap forward in the capabilities of language models, illustrating the impact of innovative training techniques and architectural modifications.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

No images available

Integrations

Alibaba Cloud
AtCoder
Code Llama
Codeforces
Conda
DeepSeek Coder
GPT-3.5
GPT-4
Hugging Face
LangChain
LeetCode
LlamaIndex
ModelScope
Ollama
PanGu Chat
PyTorch
Python
Qwen Chat
StarCoder

Integrations

Alibaba Cloud
AtCoder
Code Llama
Codeforces
Conda
DeepSeek Coder
GPT-3.5
GPT-4
Hugging Face
LangChain
LeetCode
LlamaIndex
ModelScope
Ollama
PanGu Chat
PyTorch
Python
Qwen Chat
StarCoder

Pricing Details

Free
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Alibaba

Founded

1999

Country

China

Website

github.com/QwenLM/CodeQwen1.5

Vendor Details

Company Name

Huawei

Founded

1987

Country

China

Website

huawei.com

Product Features

Alternatives

Qwen-7B Reviews

Qwen-7B

Alibaba

Alternatives

PanGu-α Reviews

PanGu-α

Huawei
CodeGemma Reviews

CodeGemma

Google
LTM-1 Reviews

LTM-1

Magic AI
OPT Reviews

OPT

Meta
Codestral Reviews

Codestral

Mistral AI
DeepSeek-V2 Reviews

DeepSeek-V2

DeepSeek