Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Chainer is a robust, adaptable, and user-friendly framework designed for building neural networks. It facilitates CUDA computation, allowing developers to utilize a GPU with just a few lines of code. Additionally, it effortlessly scales across multiple GPUs. Chainer accommodates a wide array of network architectures, including feed-forward networks, convolutional networks, recurrent networks, and recursive networks, as well as supporting per-batch designs. The framework permits forward computations to incorporate any Python control flow statements without compromising backpropagation capabilities, resulting in more intuitive and easier-to-debug code. It also features ChainerRLA, a library that encompasses several advanced deep reinforcement learning algorithms. Furthermore, with ChainerCVA, users gain access to a suite of tools specifically tailored for training and executing neural networks in computer vision applications. The ease of use and flexibility of Chainer makes it a valuable asset for both researchers and practitioners in the field. Additionally, its support for various devices enhances its versatility in handling complex computational tasks.

Description

DL4J leverages state-of-the-art distributed computing frameworks like Apache Spark and Hadoop to enhance the speed of training processes. When utilized with multiple GPUs, its performance matches that of Caffe. Fully open-source under the Apache 2.0 license, the libraries are actively maintained by both the developer community and the Konduit team. Deeplearning4j, which is developed in Java, is compatible with any language that runs on the JVM, including Scala, Clojure, and Kotlin. The core computations are executed using C, C++, and CUDA, while Keras is designated as the Python API. Eclipse Deeplearning4j stands out as the pioneering commercial-grade, open-source, distributed deep-learning library tailored for Java and Scala applications. By integrating with Hadoop and Apache Spark, DL4J effectively introduces artificial intelligence capabilities to business settings, enabling operations on distributed CPUs and GPUs. Training a deep-learning network involves tuning numerous parameters, and we have made efforts to clarify these settings, allowing Deeplearning4j to function as a versatile DIY resource for developers using Java, Scala, Clojure, and Kotlin. With its robust framework, DL4J not only simplifies the deep learning process but also fosters innovation in machine learning across various industries.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

AWS Elastic Fabric Adapter (EFA)
Amazon Web Services (AWS)
Apache Spark
Google Cloud Deep Learning VM Image
Hadoop
IBM Cloud
Microsoft 365
NVIDIA DRIVE

Integrations

AWS Elastic Fabric Adapter (EFA)
Amazon Web Services (AWS)
Apache Spark
Google Cloud Deep Learning VM Image
Hadoop
IBM Cloud
Microsoft 365
NVIDIA DRIVE

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Chainer

Country

Japan

Website

chainer.org

Vendor Details

Company Name

Deeplearning4j

Founded

2019

Country

Japan

Website

deeplearning4j.org

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Alternatives

Alternatives

MXNet Reviews

MXNet

The Apache Software Foundation
Neural Designer Reviews

Neural Designer

Artelnics
MXNet Reviews

MXNet

The Apache Software Foundation