Average Ratings 1 Rating
Average Ratings 1 Rating
Description
Utilize COMSOL's multiphysics software to replicate real-world designs, devices, and processes effectively. This versatile simulation tool is grounded in sophisticated numerical techniques. It boasts comprehensive capabilities for both fully coupled multiphysics and single-physics modeling. Users can navigate a complete modeling workflow, starting from geometry creation all the way to postprocessing. The software provides intuitive tools for the development and deployment of simulation applications. COMSOL Multiphysics® ensures a consistent user interface and experience across various engineering applications and physical phenomena. Additionally, specialized functionality is available through add-on modules that cater to fields such as electromagnetics, structural mechanics, acoustics, fluid dynamics, thermal transfer, and chemical engineering. Users can select from a range of LiveLink™ products to seamlessly connect with CAD systems and other third-party software. Furthermore, applications can be deployed using COMSOL Compiler™ and COMSOL Server™, enabling the creation of physics-driven models and simulation applications within this robust software ecosystem. With such extensive capabilities, it empowers engineers to innovate and enhance their projects effectively.
Description
Thermal Desktop encompasses every facet of creating models, integrating various built-in objects like finite difference, finite element, and lumped capacitance that can be arranged in numerous ways. Users can incorporate thermal-specific components such as contact conductance, insulation, heat loads, and heaters, enabling the modeling of a wide range of systems from automotive parts to crewed spacecraft. The software features comprehensive parameterization, allowing input through variables and complex expressions instead of fixed numerical values. These variables, known as symbols, facilitate swift adjustments to models with minimal effort, simplifying the process of updating or maintaining them, as well as conducting sensitivity analyses and exploring hypothetical scenarios. Furthermore, this capability enhances access to SINDA/FLUINT’s modules for optimization and reliability, along with automated model correlation, ultimately enriching the modeling experience. By streamlining these processes, Thermal Desktop not only improves efficiency but also fosters innovation in thermal analysis.
API Access
Has API
API Access
Has API
Integrations
AutoCAD
FloCAD
MATLAB
PTC FlexPLM
RadCAD
Rescale
SINDA/FLUINT
Siemens Opcenter APS
UberCloud
Integrations
AutoCAD
FloCAD
MATLAB
PTC FlexPLM
RadCAD
Rescale
SINDA/FLUINT
Siemens Opcenter APS
UberCloud
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Comsol Group
Founded
1986
Country
United States
Website
www.comsol.com
Vendor Details
Company Name
C&R Technologies
Founded
1992
Country
United States
Website
www.crtech.com/products/thermal-desktop
Product Features
Computer-Aided Engineering (CAE)
CAD/CAM Compatibility
Finite Element Analysis
Fluid Dynamics
Import / Export Files
Integrated 3D Modeling
Manufacturing Process Simulation
Mechanical Event Simulation
Multibody Dynamics
Thermal Analysis
Simulation
1D Simulation
3D Modeling
3D Simulation
Agent-Based Modeling
Continuous Modeling
Design Analysis
Direct Manipulation
Discrete Event Modeling
Dynamic Modeling
Graphical Modeling
Industry Specific Database
Monte Carlo Simulation
Motion Modeling
Presentation Tools
Stochastic Modeling
Turbulence Modeling