Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Boofuzz represents a continuation and enhancement of the established Sulley fuzzing framework. In addition to a variety of bug fixes, Boofuzz emphasizes extensibility and flexibility. Mirroring Sulley, it integrates essential features of a fuzzer, such as rapid data generation, instrumentation, failure detection, and the ability to reset targets after a failure, along with the capability to log test data effectively. It offers a more streamlined installation process and accommodates diverse communication mediums. Furthermore, it includes built-in capabilities for serial fuzzing, as well as support for Ethernet, IP-layer, and UDP broadcasting. The improvements in data recording are notable, providing consistency, clarity, and thoroughness in the results. Users benefit from the ability to export test results in CSV format and enjoy extensible instrumentation and failure detection options. Boofuzz operates as a Python library that facilitates the creation of fuzzer scripts, and setting it up within a virtual environment is highly advisable for optimal performance and organization. This attention to detail and user experience makes Boofuzz a powerful tool for security testing.
Description
The Robust Intelligence Platform is designed to integrate effortlessly into your machine learning lifecycle, thereby mitigating the risk of model failures. It identifies vulnerabilities within your model, blocks erroneous data from infiltrating your AI system, and uncovers statistical issues such as data drift. Central to our testing methodology is a singular test that assesses the resilience of your model against specific types of production failures. Stress Testing performs hundreds of these evaluations to gauge the readiness of the model for production deployment. The insights gained from these tests enable the automatic configuration of a tailored AI Firewall, which safeguards the model from particular failure risks that it may face. Additionally, Continuous Testing operates during production to execute these tests, offering automated root cause analysis that is driven by the underlying factors of any test failure. By utilizing all three components of the Robust Intelligence Platform in tandem, you can maintain the integrity of your machine learning processes, ensuring optimal performance and reliability. This holistic approach not only enhances model robustness but also fosters a proactive stance in managing potential issues before they escalate.
API Access
Has API
API Access
Has API
Integrations
Amazon Redshift
Amazon S3
Amazon SageMaker
Azure Blob Storage
DataRobot
Databricks Data Intelligence Platform
Google Cloud BigQuery
Google Cloud Storage
Google Sheets
H2O.ai
Integrations
Amazon Redshift
Amazon S3
Amazon SageMaker
Azure Blob Storage
DataRobot
Databricks Data Intelligence Platform
Google Cloud BigQuery
Google Cloud Storage
Google Sheets
H2O.ai
Pricing Details
Free
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Boofuzz
Website
boofuzz.readthedocs.io/en/stable/
Vendor Details
Company Name
Robust Intelligence
Founded
2019
Country
United States
Website
www.robustintelligence.com
Product Features
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization