Average Ratings 0 Ratings
Average Ratings 1 Rating
Description
Bokeh simplifies the creation of standard visualizations while also accommodating unique or specialized scenarios. It allows users to publish plots, dashboards, and applications seamlessly on web pages or within Jupyter notebooks. The Python ecosystem boasts a remarkable collection of robust analytical libraries such as NumPy, Scipy, Pandas, Dask, Scikit-Learn, and OpenCV. With its extensive selection of widgets, plotting tools, and user interface events that can initiate genuine Python callbacks, the Bokeh server serves as a vital link, enabling the integration of these libraries into dynamic, interactive visualizations accessible via the browser. Additionally, Microscopium, a project supported by researchers at Monash University, empowers scientists to uncover new functions of genes or drugs through the exploration of extensive image datasets facilitated by Bokeh’s interactive capabilities. Another useful tool, Panel, which is developed by Anaconda, enhances data presentation by leveraging the Bokeh server. It streamlines the creation of custom interactive web applications and dashboards by linking user-defined widgets to a variety of elements, including plots, images, tables, and textual information, thus broadening the scope of data interaction possibilities. This combination of tools fosters a rich environment for data analysis and visualization, making it easier for researchers and developers to share their insights.
Description
Pandas is an open-source data analysis and manipulation tool that is not only fast and powerful but also highly flexible and user-friendly, all within the Python programming ecosystem. It provides various tools for importing and exporting data across different formats, including CSV, text files, Microsoft Excel, SQL databases, and the efficient HDF5 format. With its intelligent data alignment capabilities and integrated management of missing values, users benefit from automatic label-based alignment during computations, which simplifies the process of organizing disordered data. The library features a robust group-by engine that allows for sophisticated aggregating and transforming operations, enabling users to easily perform split-apply-combine actions on their datasets. Additionally, pandas offers extensive time series functionality, including the ability to generate date ranges, convert frequencies, and apply moving window statistics, as well as manage date shifting and lagging. Users can even create custom time offsets tailored to specific domains and join time series data without the risk of losing any information. This comprehensive set of features makes pandas an essential tool for anyone working with data in Python.
API Access
Has API
API Access
Has API
Integrations
Activeeon ProActive
Amazon SageMaker Data Wrangler
Avanzai
Cleanlab
Coiled
Daft
DagsHub
Dagster+
Flower
Flyte
Integrations
Activeeon ProActive
Amazon SageMaker Data Wrangler
Avanzai
Cleanlab
Coiled
Daft
DagsHub
Dagster+
Flower
Flyte
Pricing Details
Free
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Bokeh
Website
bokeh.org
Vendor Details
Company Name
pandas
Founded
2008
Website
pandas.pydata.org
Product Features
Product Features
Data Analysis
Data Discovery
Data Visualization
High Volume Processing
Predictive Analytics
Regression Analysis
Sentiment Analysis
Statistical Modeling
Text Analytics