Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Streamline the entire machine learning lifecycle from start to finish. Equip developers and data scientists with an extensive array of efficient tools for swiftly building, training, and deploying machine learning models. Enhance the speed of market readiness and promote collaboration among teams through leading-edge MLOps—akin to DevOps but tailored for machine learning. Drive innovation within a secure, reliable platform that prioritizes responsible AI practices. Cater to users of all expertise levels with options for both code-centric and drag-and-drop interfaces, along with automated machine learning features. Implement comprehensive MLOps functionalities that seamlessly align with existing DevOps workflows, facilitating the management of the entire machine learning lifecycle. Emphasize responsible AI by providing insights into model interpretability and fairness, securing data through differential privacy and confidential computing, and maintaining control over the machine learning lifecycle with audit trails and datasheets. Additionally, ensure exceptional compatibility with top open-source frameworks and programming languages such as MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R, thus broadening accessibility and usability for diverse projects. By fostering an environment that promotes collaboration and innovation, teams can achieve remarkable advancements in their machine learning endeavors.

Description

Enhance your observability framework to swiftly identify data and machine learning challenges, facilitate ongoing enhancements, and prevent expensive incidents. Begin with dependable data by consistently monitoring data-in-motion to catch any quality concerns. Accurately detect shifts in data and models while recognizing discrepancies between training and serving datasets, allowing for timely retraining. Continuously track essential performance metrics to uncover any decline in model accuracy. It's crucial to identify and mitigate risky behaviors in generative AI applications to prevent data leaks and protect these systems from malicious attacks. Foster improvements in AI applications through user feedback, diligent monitoring, and collaboration across teams. With purpose-built agents, you can integrate in just minutes, allowing for the analysis of raw data without the need for movement or duplication, thereby ensuring both privacy and security. Onboard the WhyLabs SaaS Platform for a variety of use cases, utilizing a proprietary privacy-preserving integration that is security-approved for both healthcare and banking sectors, making it a versatile solution for sensitive environments. Additionally, this approach not only streamlines workflows but also enhances overall operational efficiency.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

APERIO DataWise
Azure Container Registry
Azure Data Science Virtual Machines
Azure Database for MariaDB
Azure Kinect DK
Azure Marketplace
Azure Percept
BotCore
Evvox
Kedro
MLflow
Microsoft Azure
Microsoft Intelligent Data Platform
NVIDIA Triton Inference Server
New Relic
Omnisient
Python
Superwise
UbiOps
Wizata

Integrations

APERIO DataWise
Azure Container Registry
Azure Data Science Virtual Machines
Azure Database for MariaDB
Azure Kinect DK
Azure Marketplace
Azure Percept
BotCore
Evvox
Kedro
MLflow
Microsoft Azure
Microsoft Intelligent Data Platform
NVIDIA Triton Inference Server
New Relic
Omnisient
Python
Superwise
UbiOps
Wizata

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Microsoft

Founded

1975

Country

United States

Website

azure.microsoft.com/en-us/services/machine-learning/

Vendor Details

Company Name

WhyLabs

Founded

2019

Country

United States

Website

whylabs.ai/

Product Features

Data Labeling

Human-in-the-loop
Labeling Automation
Labeling Quality
Performance Tracking
Polygon, Rectangle, Line, Point
SDK
Supports Audio Files
Task Management
Team Collaboration
Training Data Management

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

Alternatives

Portkey Reviews

Portkey

Portkey.ai
Vertex AI Reviews

Vertex AI

Google