Best WhyLabs Alternatives in 2025
Find the top alternatives to WhyLabs currently available. Compare ratings, reviews, pricing, and features of WhyLabs alternatives in 2025. Slashdot lists the best WhyLabs alternatives on the market that offer competing products that are similar to WhyLabs. Sort through WhyLabs alternatives below to make the best choice for your needs
-
1
New Relic
New Relic
2,602 RatingsAround 25 million engineers work across dozens of distinct functions. Engineers are using New Relic as every company is becoming a software company to gather real-time insight and trending data on the performance of their software. This allows them to be more resilient and provide exceptional customer experiences. New Relic is the only platform that offers an all-in one solution. New Relic offers customers a secure cloud for all metrics and events, powerful full-stack analytics tools, and simple, transparent pricing based on usage. New Relic also has curated the largest open source ecosystem in the industry, making it simple for engineers to get started using observability. -
2
Vertex AI
Google
727 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
3
Cloudflare
Cloudflare
1,826 RatingsCloudflare is the foundation of your infrastructure, applications, teams, and software. Cloudflare protects and ensures the reliability and security of your external-facing resources like websites, APIs, applications, and other web services. It protects your internal resources, such as behind-the firewall applications, teams, devices, and devices. It is also your platform to develop globally scalable applications. Your website, APIs, applications, and other channels are key to doing business with customers and suppliers. It is essential that these resources are reliable, secure, and performant as the world shifts online. Cloudflare for Infrastructure provides a complete solution that enables this for everything connected to the Internet. Your internal teams can rely on behind-the-firewall apps and devices to support their work. Remote work is increasing rapidly and is putting a strain on many organizations' VPNs and other hardware solutions. -
4
Splunk Enterprise
Cisco
2 RatingsSplunk Enterprise delivers an end-to-end platform for security and observability, powered by real-time analytics and machine learning. By unifying data across on-premises systems, hybrid setups, and cloud environments, it eliminates silos and gives organizations full visibility. Teams can search and analyze any type of machine data, then visualize insights through customizable dashboards that make complex information clear and actionable. With Splunk AI and advanced anomaly detection, businesses can predict, prevent, and respond to risks faster than ever. The platform also includes powerful streaming capabilities, turning raw data into insights in milliseconds. Built-in scalability allows enterprises to ingest data from thousands of sources at terabyte scale, ensuring reliability at any growth stage. Customers worldwide use Splunk to reduce incident response time, cut operational costs, and drive better outcomes. From IT to security to business resilience, Splunk transforms data into a strategic advantage. -
5
Amazon SageMaker
Amazon
Amazon SageMaker is a comprehensive machine learning platform that integrates powerful tools for model building, training, and deployment in one cohesive environment. It combines data processing, AI model development, and collaboration features, allowing teams to streamline the development of custom AI applications. With SageMaker, users can easily access data stored across Amazon S3 data lakes and Amazon Redshift data warehouses, facilitating faster insights and AI model development. It also supports generative AI use cases, enabling users to develop and scale applications with cutting-edge AI technologies. The platform’s governance and security features ensure that data and models are handled with precision and compliance throughout the entire ML lifecycle. Furthermore, SageMaker provides a unified development studio for real-time collaboration, speeding up data discovery and model deployment. -
6
InsightFinder
InsightFinder
$2.5 per core per monthInsightFinder Unified Intelligence Engine platform (UIE) provides human-centered AI solutions to identify root causes of incidents and prevent them from happening. InsightFinder uses patented self-tuning, unsupervised machine learning to continuously learn from logs, traces and triage threads of DevOps Engineers and SREs to identify root causes and predict future incidents. Companies of all sizes have adopted the platform and found that they can predict business-impacting incidents hours ahead of time with clearly identified root causes. You can get a complete overview of your IT Ops environment, including trends and patterns as well as team activities. You can also view calculations that show overall downtime savings, cost-of-labor savings, and the number of incidents solved. -
7
The Dynatrace software intelligence platform revolutionizes the way organizations operate by offering a unique combination of observability, automation, and intelligence all within a single framework. Say goodbye to cumbersome toolkits and embrace a unified platform that enhances automation across your dynamic multicloud environments while facilitating collaboration among various teams. This platform fosters synergy between business, development, and operations through a comprehensive array of tailored use cases centralized in one location. It enables you to effectively manage and integrate even the most intricate multicloud scenarios, boasting seamless compatibility with all leading cloud platforms and technologies. Gain an expansive understanding of your environment that encompasses metrics, logs, and traces, complemented by a detailed topological model that includes distributed tracing, code-level insights, entity relationships, and user experience data—all presented in context. By integrating Dynatrace’s open API into your current ecosystem, you can streamline automation across all aspects, from development and deployment to cloud operations and business workflows, ultimately leading to increased efficiency and innovation. This cohesive approach not only simplifies management but also drives measurable improvements in performance and responsiveness across the board.
-
8
Cisco AI Defense
Cisco
Cisco AI Defense represents an all-encompassing security framework aimed at empowering businesses to securely create, implement, and leverage AI technologies. It effectively tackles significant security issues like shadow AI, which refers to the unauthorized utilization of third-party generative AI applications, alongside enhancing application security by ensuring comprehensive visibility into AI resources and instituting controls to avert data breaches and reduce potential threats. Among its principal features are AI Access, which allows for the management of third-party AI applications; AI Model and Application Validation, which performs automated assessments for vulnerabilities; AI Runtime Protection, which provides real-time safeguards against adversarial threats; and AI Cloud Visibility, which catalogs AI models and data sources across various distributed settings. By harnessing Cisco's capabilities in network-layer visibility and ongoing threat intelligence enhancements, AI Defense guarantees strong defense against the continuously changing risks associated with AI technology, thus fostering a safer environment for innovation and growth. Moreover, this solution not only protects existing assets but also promotes a proactive approach to identifying and mitigating future threats. -
9
Portkey
Portkey.ai
$49 per monthLMOps is a stack that allows you to launch production-ready applications for monitoring, model management and more. Portkey is a replacement for OpenAI or any other provider APIs. Portkey allows you to manage engines, parameters and versions. Switch, upgrade, and test models with confidence. View aggregate metrics for your app and users to optimize usage and API costs Protect your user data from malicious attacks and accidental exposure. Receive proactive alerts if things go wrong. Test your models in real-world conditions and deploy the best performers. We have been building apps on top of LLM's APIs for over 2 1/2 years. While building a PoC only took a weekend, bringing it to production and managing it was a hassle! We built Portkey to help you successfully deploy large language models APIs into your applications. We're happy to help you, regardless of whether or not you try Portkey! -
10
Evidently AI
Evidently AI
$500 per monthAn open-source platform for monitoring machine learning models offers robust observability features. It allows users to evaluate, test, and oversee models throughout their journey from validation to deployment. Catering to a range of data types, from tabular formats to natural language processing and large language models, it is designed with both data scientists and ML engineers in mind. This tool provides everything necessary for the reliable operation of ML systems in a production environment. You can begin with straightforward ad hoc checks and progressively expand to a comprehensive monitoring solution. All functionalities are integrated into a single platform, featuring a uniform API and consistent metrics. The design prioritizes usability, aesthetics, and the ability to share insights easily. Users gain an in-depth perspective on data quality and model performance, facilitating exploration and troubleshooting. Setting up takes just a minute, allowing for immediate testing prior to deployment, validation in live environments, and checks during each model update. The platform also eliminates the hassle of manual configuration by automatically generating test scenarios based on a reference dataset. It enables users to keep an eye on every facet of their data, models, and testing outcomes. By proactively identifying and addressing issues with production models, it ensures sustained optimal performance and fosters ongoing enhancements. Additionally, the tool's versatility makes it suitable for teams of any size, enabling collaborative efforts in maintaining high-quality ML systems. -
11
Arize AI
Arize AI
$50/month Arize's machine-learning observability platform automatically detects and diagnoses problems and improves models. Machine learning systems are essential for businesses and customers, but often fail to perform in real life. Arize is an end to-end platform for observing and solving issues in your AI models. Seamlessly enable observation for any model, on any platform, in any environment. SDKs that are lightweight for sending production, validation, or training data. You can link real-time ground truth with predictions, or delay. You can gain confidence in your models' performance once they are deployed. Identify and prevent any performance or prediction drift issues, as well as quality issues, before they become serious. Even the most complex models can be reduced in time to resolution (MTTR). Flexible, easy-to use tools for root cause analysis are available. -
12
Galileo
Galileo
Understanding the shortcomings of models can be challenging, particularly in identifying which data caused poor performance and the reasons behind it. Galileo offers a comprehensive suite of tools that allows machine learning teams to detect and rectify data errors up to ten times quicker. By analyzing your unlabeled data, Galileo can automatically pinpoint patterns of errors and gaps in the dataset utilized by your model. We recognize that the process of ML experimentation can be chaotic, requiring substantial data and numerous model adjustments over multiple iterations. With Galileo, you can manage and compare your experiment runs in a centralized location and swiftly distribute reports to your team. Designed to seamlessly fit into your existing ML infrastructure, Galileo enables you to send a curated dataset to your data repository for retraining, direct mislabeled data to your labeling team, and share collaborative insights, among other functionalities. Ultimately, Galileo is specifically crafted for ML teams aiming to enhance the quality of their models more efficiently and effectively. This focus on collaboration and speed makes it an invaluable asset for teams striving to innovate in the machine learning landscape. -
13
UpTrain
UpTrain
Obtain scores that assess factual accuracy, context retrieval quality, guideline compliance, tonality, among other metrics. Improvement is impossible without measurement. UpTrain consistently evaluates your application's performance against various criteria and notifies you of any declines, complete with automatic root cause analysis. This platform facilitates swift and effective experimentation across numerous prompts, model providers, and personalized configurations by generating quantitative scores that allow for straightforward comparisons and the best prompt selection. Hallucinations have been a persistent issue for LLMs since their early days. By measuring the extent of hallucinations and the quality of the retrieved context, UpTrain aids in identifying responses that lack factual correctness, ensuring they are filtered out before reaching end-users. Additionally, this proactive approach enhances the reliability of responses, fostering greater trust in automated systems. -
14
Aporia
Aporia
Craft personalized monitoring solutions for your machine learning models using our incredibly intuitive monitor builder, which alerts you to problems such as concept drift, declines in model performance, and bias, among other issues. Aporia effortlessly integrates with any machine learning infrastructure, whether you're utilizing a FastAPI server on Kubernetes, an open-source deployment solution like MLFlow, or a comprehensive machine learning platform such as AWS Sagemaker. Dive into specific data segments to meticulously observe your model's behavior. Detect unforeseen bias, suboptimal performance, drifting features, and issues related to data integrity. When challenges arise with your ML models in a production environment, having the right tools at your disposal is essential for swiftly identifying the root cause. Additionally, expand your capabilities beyond standard model monitoring with our investigation toolbox, which allows for an in-depth analysis of model performance, specific data segments, statistics, and distributions, ensuring you maintain optimal model functionality and integrity. -
15
Censius is a forward-thinking startup operating within the realms of machine learning and artificial intelligence, dedicated to providing AI observability solutions tailored for enterprise ML teams. With the growing reliance on machine learning models, it is crucial to maintain a keen oversight on their performance. As a specialized AI Observability Platform, Censius empowers organizations, regardless of their size, to effectively deploy their machine-learning models in production environments with confidence. The company has introduced its flagship platform designed to enhance accountability and provide clarity in data science initiatives. This all-encompassing ML monitoring tool enables proactive surveillance of entire ML pipelines, allowing for the identification and resolution of various issues, including drift, skew, data integrity, and data quality challenges. By implementing Censius, users can achieve several key benefits, such as: 1. Monitoring and documenting essential model metrics 2. Accelerating recovery times through precise issue detection 3. Articulating problems and recovery plans to stakeholders 4. Clarifying the rationale behind model decisions 5. Minimizing downtime for users 6. Enhancing trust among customers Moreover, Censius fosters a culture of continuous improvement, ensuring that organizations can adapt to evolving challenges in the machine learning landscape.
-
16
Arthur AI
Arthur
Monitor the performance of your models to identify and respond to data drift, enhancing accuracy for improved business results. Foster trust, ensure regulatory compliance, and promote actionable machine learning outcomes using Arthur’s APIs that prioritize explainability and transparency. Actively supervise for biases, evaluate model results against tailored bias metrics, and enhance your models' fairness. Understand how each model interacts with various demographic groups, detect biases early, and apply Arthur's unique bias reduction strategies. Arthur is capable of scaling to accommodate up to 1 million transactions per second, providing quick insights. Only authorized personnel can perform actions, ensuring data security. Different teams or departments can maintain separate environments with tailored access controls, and once data is ingested, it becomes immutable, safeguarding the integrity of metrics and insights. This level of control and monitoring not only improves model performance but also supports ethical AI practices. -
17
Gantry
Gantry
Gain a comprehensive understanding of your model's efficacy by logging both inputs and outputs while enhancing them with relevant metadata and user insights. This approach allows you to truly assess your model's functionality and identify areas that require refinement. Keep an eye out for errors and pinpoint underperforming user segments and scenarios that may need attention. The most effective models leverage user-generated data; therefore, systematically collect atypical or low-performing instances to enhance your model through retraining. Rather than sifting through countless outputs following adjustments to your prompts or models, adopt a programmatic evaluation of your LLM-driven applications. Rapidly identify and address performance issues by monitoring new deployments in real-time and effortlessly updating the version of your application that users engage with. Establish connections between your self-hosted or third-party models and your current data repositories for seamless integration. Handle enterprise-scale data effortlessly with our serverless streaming data flow engine, designed for efficiency and scalability. Moreover, Gantry adheres to SOC-2 standards and incorporates robust enterprise-grade authentication features to ensure data security and integrity. This dedication to compliance and security solidifies trust with users while optimizing performance. -
18
Fiddler AI
Fiddler AI
Fiddler is a pioneer in enterprise Model Performance Management. Data Science, MLOps, and LOB teams use Fiddler to monitor, explain, analyze, and improve their models and build trust into AI. The unified environment provides a common language, centralized controls, and actionable insights to operationalize ML/AI with trust. It addresses the unique challenges of building in-house stable and secure MLOps systems at scale. Unlike observability solutions, Fiddler seamlessly integrates deep XAI and analytics to help you grow into advanced capabilities over time and build a framework for responsible AI practices. Fortune 500 organizations use Fiddler across training and production models to accelerate AI time-to-value and scale and increase revenue. -
19
Mona
Mona
Mona is a flexible and intelligent monitoring platform for AI / ML. Data science teams leverage Mona’s powerful analytical engine to gain granular insights about the behavior of their data and models, and detect issues within specific segments of data, in order to reduce business risk and pinpoint areas that need improvements. Mona enables tracking custom metrics for any AI use case within any industry and easily integrates with existing tech stacks. In 2018, we ventured on a mission to empower data teams to make AI more impactful and reliable, and to raise the collective confidence of business and technology leaders in their ability to make the most out of AI. We have built the leading intelligent monitoring platform to provide data and AI teams with continuous insights to help them reduce risks, optimize their operations, and ultimately build more valuable AI systems. Enterprises in a variety of industries leverage Mona for NLP/NLU, speech, computer vision, and machine learning use cases. Mona was founded by experienced product leaders from Google and McKinsey&Co, is backed by top VCs, and is HQ in Atlanta, Georgia. In 2021, Mona was recognized by Gartner as a Cool Vendor in AI Operationalization and Engineering. -
20
Deeploy
Deeploy
Deeploy empowers users to maintain oversight of their machine learning models. With our responsible AI platform, you can effortlessly deploy your models while ensuring that transparency, control, and compliance are upheld. In today's landscape, the significance of transparency, explainability, and security in AI models cannot be overstated. By providing a secure environment for model deployment, you can consistently track your model's performance with assurance and responsibility. Throughout our journey, we have recognized the critical role that human involvement plays in the realm of machine learning. When machine learning systems are designed to be explainable and accountable, it enables both experts and consumers to offer valuable feedback, challenge decisions when warranted, and foster a sense of trust. This understanding is precisely why we developed Deeploy, to bridge the gap between advanced technology and human oversight. Ultimately, our mission is to facilitate a harmonious relationship between AI systems and their users, ensuring that ethical considerations are always at the forefront. -
21
Athina AI
Athina AI
FreeAthina functions as a collaborative platform for AI development, empowering teams to efficiently create, test, and oversee their AI applications. It includes a variety of features such as prompt management, evaluation tools, dataset management, and observability, all aimed at facilitating the development of dependable AI systems. With the ability to integrate various models and services, including custom solutions, Athina also prioritizes data privacy through detailed access controls and options for self-hosted deployments. Moreover, the platform adheres to SOC-2 Type 2 compliance standards, ensuring a secure setting for AI development activities. Its intuitive interface enables seamless collaboration between both technical and non-technical team members, significantly speeding up the process of deploying AI capabilities. Ultimately, Athina stands out as a versatile solution that helps teams harness the full potential of artificial intelligence. -
22
Langtrace
Langtrace
FreeLangtrace is an open-source observability solution designed to gather and evaluate traces and metrics, aiming to enhance your LLM applications. It prioritizes security with its cloud platform being SOC 2 Type II certified, ensuring your data remains highly protected. The tool is compatible with a variety of popular LLMs, frameworks, and vector databases. Additionally, Langtrace offers the option for self-hosting and adheres to the OpenTelemetry standard, allowing traces to be utilized by any observability tool of your preference and thus avoiding vendor lock-in. Gain comprehensive visibility and insights into your complete ML pipeline, whether working with a RAG or a fine-tuned model, as it effectively captures traces and logs across frameworks, vector databases, and LLM requests. Create annotated golden datasets through traced LLM interactions, which can then be leveraged for ongoing testing and improvement of your AI applications. Langtrace comes equipped with heuristic, statistical, and model-based evaluations to facilitate this enhancement process, thereby ensuring that your systems evolve alongside the latest advancements in technology. With its robust features, Langtrace empowers developers to maintain high performance and reliability in their machine learning projects. -
23
Azure Machine Learning
Microsoft
Streamline the entire machine learning lifecycle from start to finish. Equip developers and data scientists with an extensive array of efficient tools for swiftly building, training, and deploying machine learning models. Enhance the speed of market readiness and promote collaboration among teams through leading-edge MLOps—akin to DevOps but tailored for machine learning. Drive innovation within a secure, reliable platform that prioritizes responsible AI practices. Cater to users of all expertise levels with options for both code-centric and drag-and-drop interfaces, along with automated machine learning features. Implement comprehensive MLOps functionalities that seamlessly align with existing DevOps workflows, facilitating the management of the entire machine learning lifecycle. Emphasize responsible AI by providing insights into model interpretability and fairness, securing data through differential privacy and confidential computing, and maintaining control over the machine learning lifecycle with audit trails and datasheets. Additionally, ensure exceptional compatibility with top open-source frameworks and programming languages such as MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R, thus broadening accessibility and usability for diverse projects. By fostering an environment that promotes collaboration and innovation, teams can achieve remarkable advancements in their machine learning endeavors. -
24
Acuvity
Acuvity
Acuvity stands out as the most all-encompassing AI security and governance platform tailored for both your workforce and applications. By employing DevSecOps, AI security can be integrated without necessitating code alterations, allowing developers to concentrate on advancing AI innovations. The incorporation of pluggable AI security ensures a thorough coverage, eliminating the reliance on outdated libraries or insufficient protection. Moreover, it helps in optimizing expenses by effectively utilizing GPUs exclusively for LLM models. With Acuvity, you gain complete visibility into all GenAI models, applications, plugins, and services that your teams are actively using and investigating. It provides detailed observability into all GenAI interactions through extensive logging and maintains an audit trail of inputs and outputs. As enterprises increasingly adopt AI, it becomes crucial to implement a tailored security framework capable of addressing novel AI risk vectors while adhering to forthcoming AI regulations. This approach empowers employees to harness AI capabilities with confidence, minimizing the risk of exposing sensitive information. Additionally, the legal department seeks assurance that there are no copyright or regulatory complications associated with AI-generated content usage, further enhancing the framework's integrity. Ultimately, Acuvity fosters a secure environment for innovation while ensuring compliance and safeguarding valuable assets. -
25
Tumeryk
Tumeryk
Tumeryk Inc. focuses on cutting-edge security solutions for generative AI, providing tools such as the AI Trust Score that facilitates real-time monitoring, risk assessment, and regulatory compliance. Our innovative platform enables businesses to safeguard their AI systems, ensuring that deployments are not only reliable and trustworthy but also adhere to established policies. The AI Trust Score assesses the potential risks of utilizing generative AI technologies, which aids organizations in complying with important regulations like the EU AI Act, ISO 42001, and NIST RMF 600.1. This score evaluates the dependability of responses generated by AI, considering various risks such as bias, susceptibility to jailbreak exploits, irrelevance, harmful content, potential leaks of Personally Identifiable Information (PII), and instances of hallucination. Additionally, it can be seamlessly incorporated into existing business workflows, enabling companies to make informed decisions on whether to accept, flag, or reject AI-generated content, thereby helping to reduce the risks tied to such technologies. By implementing this score, organizations can foster a safer environment for AI deployment, ultimately enhancing public trust in automated systems. -
26
Orq.ai
Orq.ai
Orq.ai stands out as the leading platform tailored for software teams to effectively manage agentic AI systems on a large scale. It allows you to refine prompts, implement various use cases, and track performance meticulously, ensuring no blind spots and eliminating the need for vibe checks. Users can test different prompts and LLM settings prior to launching them into production. Furthermore, it provides the capability to assess agentic AI systems within offline environments. The platform enables the deployment of GenAI features to designated user groups, all while maintaining robust guardrails, prioritizing data privacy, and utilizing advanced RAG pipelines. It also offers the ability to visualize all agent-triggered events, facilitating rapid debugging. Users gain detailed oversight of costs, latency, and overall performance. Additionally, you can connect with your preferred AI models or even integrate your own. Orq.ai accelerates workflow efficiency with readily available components specifically designed for agentic AI systems. It centralizes the management of essential phases in the LLM application lifecycle within a single platform. With options for self-hosted or hybrid deployment, it ensures compliance with SOC 2 and GDPR standards, thereby providing enterprise-level security. This comprehensive approach not only streamlines operations but also empowers teams to innovate and adapt swiftly in a dynamic technological landscape. -
27
Dynamiq
Dynamiq
$125/month Dynamiq serves as a comprehensive platform tailored for engineers and data scientists, enabling them to construct, deploy, evaluate, monitor, and refine Large Language Models for various enterprise applications. Notable characteristics include: 🛠️ Workflows: Utilize a low-code interface to design GenAI workflows that streamline tasks on a large scale. 🧠 Knowledge & RAG: Develop personalized RAG knowledge bases and swiftly implement vector databases. 🤖 Agents Ops: Design specialized LLM agents capable of addressing intricate tasks while linking them to your internal APIs. 📈 Observability: Track all interactions and conduct extensive evaluations of LLM quality. 🦺 Guardrails: Ensure accurate and dependable LLM outputs through pre-existing validators, detection of sensitive information, and safeguards against data breaches. 📻 Fine-tuning: Tailor proprietary LLM models to align with your organization's specific needs and preferences. With these features, Dynamiq empowers users to harness the full potential of language models for innovative solutions. -
28
Monitaur
Monitaur
Developing responsible AI is fundamentally a business challenge rather than merely a technological one. To tackle this comprehensive issue, we unite teams on a single platform that helps to lessen risks, maximize your capabilities, and transform aspirations into tangible outcomes. By integrating every phase of your AI/ML journey with our cloud-based governance tools, GovernML serves as the essential launchpad for fostering effective AI/ML systems. Our platform offers intuitive workflows that meticulously document your entire AI journey in one consolidated location. This approach not only aids in risk management but also positively impacts your financial performance. Monitaur enhances this experience by providing cloud-based governance applications that monitor your AI/ML models from their initial policies to tangible evidence of their effectiveness. Our SOC 2 Type II certification further strengthens your AI governance while offering customized solutions within a single, cohesive platform. With GovernML, you can be assured of embracing responsible AI/ML systems, all while benefiting from scalable and user-friendly workflows that capture the complete lifecycle of your AI initiatives on one platform. This integration fosters collaboration and innovation across your organization, driving success in your AI endeavors. -
29
Create, execute, and oversee AI models while enhancing decision-making at scale across any cloud infrastructure. IBM Watson Studio enables you to implement AI seamlessly anywhere as part of the IBM Cloud Pak® for Data, which is the comprehensive data and AI platform from IBM. Collaborate across teams, streamline the management of the AI lifecycle, and hasten the realization of value with a versatile multicloud framework. You can automate the AI lifecycles using ModelOps pipelines and expedite data science development through AutoAI. Whether preparing or constructing models, you have the option to do so visually or programmatically. Deploying and operating models is made simple with one-click integration. Additionally, promote responsible AI governance by ensuring your models are fair and explainable to strengthen business strategies. Leverage open-source frameworks such as PyTorch, TensorFlow, and scikit-learn to enhance your projects. Consolidate development tools, including leading IDEs, Jupyter notebooks, JupyterLab, and command-line interfaces, along with programming languages like Python, R, and Scala. Through the automation of AI lifecycle management, IBM Watson Studio empowers you to build and scale AI solutions with an emphasis on trust and transparency, ultimately leading to improved organizational performance and innovation.
-
30
OpenLIT
OpenLIT
FreeOpenLIT serves as an observability tool that is fully integrated with OpenTelemetry, specifically tailored for application monitoring. It simplifies the integration of observability into AI projects, requiring only a single line of code for setup. This tool is compatible with leading LLM libraries, such as those from OpenAI and HuggingFace, making its implementation feel both easy and intuitive. Users can monitor LLM and GPU performance, along with associated costs, to optimize efficiency and scalability effectively. The platform streams data for visualization, enabling rapid decision-making and adjustments without compromising application performance. OpenLIT's user interface is designed to provide a clear view of LLM expenses, token usage, performance metrics, and user interactions. Additionally, it facilitates seamless connections to widely-used observability platforms like Datadog and Grafana Cloud for automatic data export. This comprehensive approach ensures that your applications are consistently monitored, allowing for proactive management of resources and performance. With OpenLIT, developers can focus on enhancing their AI models while the tool manages observability seamlessly. -
31
Dash0
Dash0
$0.20 per monthDash0 serves as a comprehensive observability platform rooted in OpenTelemetry, amalgamating metrics, logs, traces, and resources into a single, user-friendly interface that facilitates swift and context-aware monitoring while avoiding vendor lock-in. It consolidates metrics from Prometheus and OpenTelemetry, offering robust filtering options for high-cardinality attributes, alongside heatmap drilldowns and intricate trace visualizations to help identify errors and bottlenecks immediately. Users can take advantage of fully customizable dashboards powered by Perses, featuring code-based configuration and the ability to import from Grafana, in addition to smooth integration with pre-established alerts, checks, and PromQL queries. The platform's AI-driven tools, including Log AI for automated severity inference and pattern extraction, enhance telemetry data seamlessly, allowing users to benefit from sophisticated analytics without noticing the underlying AI processes. These artificial intelligence features facilitate log classification, grouping, inferred severity tagging, and efficient triage workflows using the SIFT framework, ultimately improving the overall monitoring experience. Additionally, Dash0 empowers teams to respond proactively to system issues, ensuring optimal performance and reliability across their applications. -
32
Logfire
Pydantic
$2 per monthPydantic Logfire serves as an observability solution aimed at enhancing the monitoring of Python applications by converting logs into practical insights. It offers valuable performance metrics, tracing capabilities, and a comprehensive view of application dynamics, which encompasses request headers, bodies, and detailed execution traces. Built upon OpenTelemetry, Pydantic Logfire seamlessly integrates with widely-used libraries, ensuring user-friendliness while maintaining the adaptability of OpenTelemetry’s functionalities. Developers can enrich their applications with structured data and easily queryable Python objects, allowing them to obtain real-time insights through a variety of visualizations, dashboards, and alert systems. In addition, Logfire facilitates manual tracing, context logging, and exception handling, presenting a contemporary logging framework. This tool is specifically designed for developers in search of a streamlined and efficient observability solution, boasting ready-to-use integrations and user-centric features. Its flexibility and comprehensive capabilities make it a valuable asset for anyone looking to improve their application's monitoring strategy. -
33
Helicone
Helicone
$1 per 10,000 requestsMonitor expenses, usage, and latency for GPT applications seamlessly with just one line of code. Renowned organizations that leverage OpenAI trust our service. We are expanding our support to include Anthropic, Cohere, Google AI, and additional platforms in the near future. Stay informed about your expenses, usage patterns, and latency metrics. With Helicone, you can easily integrate models like GPT-4 to oversee API requests and visualize outcomes effectively. Gain a comprehensive view of your application through a custom-built dashboard specifically designed for generative AI applications. All your requests can be viewed in a single location, where you can filter them by time, users, and specific attributes. Keep an eye on expenditures associated with each model, user, or conversation to make informed decisions. Leverage this information to enhance your API usage and minimize costs. Additionally, cache requests to decrease latency and expenses, while actively monitoring errors in your application and addressing rate limits and reliability issues using Helicone’s robust features. This way, you can optimize performance and ensure that your applications run smoothly. -
34
Tenable AI Exposure
Tenable
Tenable AI Exposure is a robust, agentless solution integrated into the Tenable One exposure management platform, designed to enhance visibility, context, and control over the utilization of generative AI tools such as ChatGPT Enterprise and Microsoft Copilot. This tool empowers organizations to track user engagement with AI technologies, providing insights into who is accessing them, the nature of the data involved, and the execution of workflows, while identifying and addressing potential risks like misconfigurations, insecure integrations, and the leakage of sensitive information, including personally identifiable information (PII), payment card information (PCI), and proprietary business data. Furthermore, it protects against threats like prompt injections, jailbreak attempts, and policy breaches by implementing security measures that do not interfere with daily operations. Compatible with leading AI platforms and ready for deployment in just minutes with zero downtime, Tenable AI Exposure facilitates the governance of AI use, making it an essential component of an organization's overall cyber risk management strategy, ultimately ensuring safer and more compliant AI operations. By integrating these security protocols, organizations can foster a culture of responsible AI usage while mitigating potential vulnerabilities. -
35
Langfuse is a free and open-source LLM engineering platform that helps teams to debug, analyze, and iterate their LLM Applications. Observability: Incorporate Langfuse into your app to start ingesting traces. Langfuse UI : inspect and debug complex logs, user sessions and user sessions Langfuse Prompts: Manage versions, deploy prompts and manage prompts within Langfuse Analytics: Track metrics such as cost, latency and quality (LLM) to gain insights through dashboards & data exports Evals: Calculate and collect scores for your LLM completions Experiments: Track app behavior and test it before deploying new versions Why Langfuse? - Open source - Models and frameworks are agnostic - Built for production - Incrementally adaptable - Start with a single LLM or integration call, then expand to the full tracing for complex chains/agents - Use GET to create downstream use cases and export the data
-
36
Aquarium
Aquarium
$1,250 per monthAquarium's innovative embedding technology identifies significant issues in your model's performance and connects you with the appropriate data to address them. Experience the benefits of neural network embeddings while eliminating the burdens of infrastructure management and debugging embedding models. Effortlessly uncover the most pressing patterns of model failures within your datasets. Gain insights into the long tail of edge cases, enabling you to prioritize which problems to tackle first. Navigate through extensive unlabeled datasets to discover scenarios that fall outside the norm. Utilize few-shot learning technology to initiate new classes with just a few examples. The larger your dataset, the greater the value we can provide. Aquarium is designed to effectively scale with datasets that contain hundreds of millions of data points. Additionally, we offer dedicated solutions engineering resources, regular customer success meetings, and user training to ensure that our clients maximize their benefits. For organizations concerned about privacy, we also provide an anonymous mode that allows the use of Aquarium without risking exposure of sensitive information, ensuring that security remains a top priority. Ultimately, with Aquarium, you can enhance your model's capabilities while maintaining the integrity of your data. -
37
Overseer AI
Overseer AI
$99 per monthOverseer AI serves as a sophisticated platform aimed at ensuring that content generated by artificial intelligence is not only safe but also accurate and in harmony with user-defined guidelines. The platform automates the enforcement of compliance by adhering to regulatory standards through customizable policy rules, while its real-time content moderation feature actively prevents the dissemination of harmful, toxic, or biased AI outputs. Additionally, Overseer AI supports the debugging of AI-generated content by rigorously testing and monitoring responses in accordance with custom safety policies. It promotes policy-driven governance by implementing centralized safety regulations across all AI interactions and fosters trust in AI systems by ensuring that outputs are safe, accurate, and consistent with brand standards. Catering to a diverse array of sectors such as healthcare, finance, legal technology, customer support, education technology, and ecommerce & retail, Overseer AI delivers tailored solutions that align AI responses with the specific regulations and standards pertinent to each industry. Furthermore, developers benefit from extensive guides and API references, facilitating the seamless integration of Overseer AI into their applications while enhancing the overall user experience. This comprehensive approach not only safeguards users but also empowers businesses to leverage AI technologies confidently. -
38
Superwise
Superwise
FreeAchieve in minutes what previously took years to develop with our straightforward, adaptable, scalable, and secure machine learning monitoring solution. You’ll find all the tools necessary to deploy, sustain, and enhance machine learning in a production environment. Superwise offers an open platform that seamlessly integrates with any machine learning infrastructure and connects with your preferred communication tools. If you wish to explore further, Superwise is designed with an API-first approach, ensuring that every feature is available through our APIs, all accessible from the cloud platform of your choice. With Superwise, you gain complete self-service control over your machine learning monitoring. You can configure metrics and policies via our APIs and SDK, or you can simply choose from a variety of monitoring templates to set sensitivity levels, conditions, and alert channels that suit your needs. Experience the benefits of Superwise for yourself, or reach out to us for more information. Effortlessly create alerts using Superwise’s policy templates and monitoring builder, selecting from numerous pre-configured monitors that address issues like data drift and fairness, or tailor policies to reflect your specialized knowledge and insights. The flexibility and ease of use provided by Superwise empower users to effectively manage their machine learning models. -
39
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights. -
40
IBM Cloud Pak for Data
IBM
$699 per monthThe primary obstacle in expanding AI-driven decision-making lies in the underutilization of data. IBM Cloud Pak® for Data provides a cohesive platform that integrates a data fabric, enabling seamless connection and access to isolated data, whether it resides on-premises or in various cloud environments, without necessitating data relocation. It streamlines data accessibility by automatically identifying and organizing data to present actionable knowledge assets to users, while simultaneously implementing automated policy enforcement to ensure secure usage. To further enhance the speed of insights, this platform incorporates a modern cloud data warehouse that works in harmony with existing systems. It universally enforces data privacy and usage policies across all datasets, ensuring compliance is maintained. By leveraging a high-performance cloud data warehouse, organizations can obtain insights more rapidly. Additionally, the platform empowers data scientists, developers, and analysts with a comprehensive interface to construct, deploy, and manage reliable AI models across any cloud infrastructure. Moreover, enhance your analytics capabilities with Netezza, a robust data warehouse designed for high performance and efficiency. This comprehensive approach not only accelerates decision-making but also fosters innovation across various sectors. -
41
Sekura.ai
Sekura.ai
Sekura.ai specializes in cybersecurity solutions powered by artificial intelligence, aimed at improving both threat detection and response mechanisms. Their innovative applications utilize cutting-edge AI to promptly recognize and address security vulnerabilities, providing companies with strong defenses against cyber threats. By integrating these AI advancements, organizations can safeguard sensitive information, ensure compliance with regulations, and allow their engineering teams to concentrate on their primary products. Additionally, the safe deployment of advanced large language models can significantly enhance internal processes and customer interactions. Sensitive information can be rapidly detected and removed during all stages of LLM activities, including training and inference. Moreover, access to critical training data and prompts can be tightly controlled, allowing the use of external models while protecting confidential information. Organizations can establish detailed permissions for data access with time-limited controls, ensuring they remain compliant with changing data privacy regulations. Securely utilizing public LLMs eliminates the need for expensive internal model development, thereby optimizing resources while maintaining a high level of data security. -
42
Snitch AI
Snitch AI
$1,995 per yearStreamlining quality assurance for machine learning, Snitch cuts through the clutter to highlight the most valuable insights for enhancing your models. It allows you to monitor performance metrics that extend beyond mere accuracy through comprehensive dashboards and analytical tools. You can pinpoint issues within your data pipeline and recognize distribution changes before they impact your predictions. Once deployed, maintain your model in production while gaining insight into its performance and data throughout its lifecycle. Enjoy flexibility with your data security, whether in the cloud, on-premises, private cloud, or hybrid environments, while choosing your preferred installation method for Snitch. Seamlessly integrate Snitch into your existing MLops framework and continue using your favorite tools! Our installation process is designed for quick setup, ensuring that learning and operating the product are straightforward and efficient. Remember, accuracy alone can be deceptive; therefore, it’s crucial to assess your models for robustness and feature significance before launch. Obtain actionable insights that will help refine your models, and make comparisons with historical metrics and your models' established baselines to drive continuous improvement. This comprehensive approach not only bolsters performance but also fosters a deeper understanding of your machine learning processes. -
43
Dataiku serves as a sophisticated platform for data science and machine learning, aimed at facilitating teams in the construction, deployment, and management of AI and analytics projects on a large scale. It enables a diverse range of users, including data scientists and business analysts, to work together in developing data pipelines, crafting machine learning models, and preparing data through various visual and coding interfaces. Supporting the complete AI lifecycle, Dataiku provides essential tools for data preparation, model training, deployment, and ongoing monitoring of projects. Additionally, the platform incorporates integrations that enhance its capabilities, such as generative AI, thereby allowing organizations to innovate and implement AI solutions across various sectors. This adaptability positions Dataiku as a valuable asset for teams looking to harness the power of AI effectively.
-
44
IBM Watson OpenScale serves as a robust enterprise-level framework designed for AI-driven applications, granting organizations insight into the formulation and utilization of AI, as well as the realization of return on investment. This platform enables companies to build and implement reliable AI solutions using their preferred integrated development environment (IDE), thus equipping their operations and support teams with valuable data insights that illustrate AI's impact on business outcomes. By capturing payload data and deployment results, users can effectively monitor the health of their business applications through comprehensive operational dashboards, timely alerts, and access to an open data warehouse for tailored reporting. Furthermore, it has the capability to automatically identify when AI systems produce erroneous outcomes during runtime, guided by fairness criteria established by the business. Additionally, it helps reduce bias by offering intelligent suggestions for new data to enhance model training, promoting a more equitable AI development process. Overall, IBM Watson OpenScale not only supports the creation of effective AI solutions but also ensures that these solutions are continuously optimized for accuracy and fairness.
-
45
Harmonic
Harmonic
Over half of organizations, specifically 55%, are integrating AI technologies to maintain a competitive edge in the market. Harmonic ensures that your organization remains at the forefront by providing security teams with powerful tools for effective and secure AI deployment. As employees increasingly utilize new technologies from various remote locations, Harmonic enhances your security capabilities, ensuring that no unauthorized AI activities go unnoticed. By implementing Harmonic's advanced protective measures, you can significantly reduce the risks of data breaches and uphold compliance, thereby safeguarding your confidential information. Conventional data security strategies are struggling to keep pace with the swift evolution of AI technologies, leaving many security teams relying on outdated, overly broad practices that hinder productivity. Harmonic offers a more intelligent solution, equipping security professionals with the necessary tools and insights to efficiently protect sensitive, unstructured data while maintaining operational effectiveness. By adopting Harmonic’s innovative approach, organizations can strike a balance between security and productivity, ensuring a robust defense against emerging threats.