Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Easily create and execute highly parallel data transformation and processing tasks using U-SQL, R, Python, and .NET across vast amounts of data. With no need to manage infrastructure, you can process data on demand, scale up instantly, and incur costs only per job. Azure Data Lake Analytics allows you to complete big data tasks in mere seconds. There’s no infrastructure to manage since there are no servers, virtual machines, or clusters that require monitoring or tuning. You can quickly adjust the processing capacity, measured in Azure Data Lake Analytics Units (AU), from one to thousands for every job. Payment is based solely on the processing used for each job. Take advantage of optimized data virtualization for your relational sources like Azure SQL Database and Azure Synapse Analytics. Your queries benefit from automatic optimization, as processing is performed close to the source data without requiring data movement, thereby enhancing performance and reducing latency. Additionally, this setup enables organizations to efficiently utilize their data resources and respond swiftly to analytical needs.
Description
lakeFS allows you to control your data lake similarly to how you manage your source code, facilitating parallel pipelines for experimentation as well as continuous integration and deployment for your data. This platform streamlines the workflows of engineers, data scientists, and analysts who are driving innovation through data. As an open-source solution, lakeFS enhances the resilience and manageability of object-storage-based data lakes. With lakeFS, you can execute reliable, atomic, and versioned operations on your data lake, encompassing everything from intricate ETL processes to advanced data science and analytics tasks. It is compatible with major cloud storage options, including AWS S3, Azure Blob Storage, and Google Cloud Storage (GCS). Furthermore, lakeFS seamlessly integrates with a variety of modern data frameworks such as Spark, Hive, AWS Athena, and Presto, thanks to its API compatibility with S3. The platform features a Git-like model for branching and committing that can efficiently scale to handle exabytes of data while leveraging the storage capabilities of S3, GCS, or Azure Blob. In addition, lakeFS empowers teams to collaborate more effectively by allowing multiple users to work on the same dataset without conflicts, making it an invaluable tool for data-driven organizations.
API Access
Has API
API Access
Has API
Integrations
Amazon Kinesis
Amazon S3
Amazon SES
Amazon Web Services (AWS)
Apache Airflow
Apache Flink
Apache Hive
Apache Spark
Astro
Azure Blob Storage
Integrations
Amazon Kinesis
Amazon S3
Amazon SES
Amazon Web Services (AWS)
Apache Airflow
Apache Flink
Apache Hive
Apache Spark
Astro
Azure Blob Storage
Pricing Details
$2 per hour
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Microsoft
Founded
1975
Country
United States
Website
azure.microsoft.com/en-us/services/data-lake-analytics/
Vendor Details
Company Name
Treeverse
Founded
2020
Country
Israel
Website
lakefs.io
Product Features
Big Data
Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates
Product Features
Data Management
Customer Data
Data Analysis
Data Capture
Data Integration
Data Migration
Data Quality Control
Data Security
Information Governance
Master Data Management
Match & Merge