Best Azure Data Lake Analytics Alternatives in 2025
Find the top alternatives to Azure Data Lake Analytics currently available. Compare ratings, reviews, pricing, and features of Azure Data Lake Analytics alternatives in 2025. Slashdot lists the best Azure Data Lake Analytics alternatives on the market that offer competing products that are similar to Azure Data Lake Analytics. Sort through Azure Data Lake Analytics alternatives below to make the best choice for your needs
-
1
Google Cloud is an online service that lets you create everything from simple websites to complex apps for businesses of any size. Customers who are new to the system will receive $300 in credits for testing, deploying, and running workloads. Customers can use up to 25+ products free of charge. Use Google's core data analytics and machine learning. All enterprises can use it. It is secure and fully featured. Use big data to build better products and find answers faster. You can grow from prototypes to production and even to planet-scale without worrying about reliability, capacity or performance. Virtual machines with proven performance/price advantages, to a fully-managed app development platform. High performance, scalable, resilient object storage and databases. Google's private fibre network offers the latest software-defined networking solutions. Fully managed data warehousing and data exploration, Hadoop/Spark and messaging.
-
2
BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
-
3
StarTree
StarTree
25 RatingsStarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time. -
4
Azure HDInsight
Microsoft
Utilize widely-used open-source frameworks like Apache Hadoop, Spark, Hive, and Kafka with Azure HDInsight, a customizable and enterprise-level service designed for open-source analytics. Effortlessly manage vast data sets while leveraging the extensive open-source project ecosystem alongside Azure’s global capabilities. Transitioning your big data workloads to the cloud is straightforward and efficient. You can swiftly deploy open-source projects and clusters without the hassle of hardware installation or infrastructure management. The big data clusters are designed to minimize expenses through features like autoscaling and pricing tiers that let you pay solely for your actual usage. With industry-leading security and compliance validated by over 30 certifications, your data is well protected. Additionally, Azure HDInsight ensures you remain current with the optimized components tailored for technologies such as Hadoop and Spark, providing an efficient and reliable solution for your analytics needs. This service not only streamlines processes but also enhances collaboration across teams. -
5
IRI Voracity
IRI, The CoSort Company
IRI Voracity is an end-to-end software platform for fast, affordable, and ergonomic data lifecycle management. Voracity speeds, consolidates, and often combines the key activities of data discovery, integration, migration, governance, and analytics in a single pane of glass, built on Eclipse™. Through its revolutionary convergence of capability and its wide range of job design and runtime options, Voracity bends the multi-tool cost, difficulty, and risk curves away from megavendor ETL packages, disjointed Apache projects, and specialized software. Voracity uniquely delivers the ability to perform data: * profiling and classification * searching and risk-scoring * integration and federation * migration and replication * cleansing and enrichment * validation and unification * masking and encryption * reporting and wrangling * subsetting and testing Voracity runs on-premise, or in the cloud, on physical or virtual machines, and its runtimes can also be containerized or called from real-time applications or batch jobs. -
6
Apache Spark
Apache Software Foundation
Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics. -
7
Trino
Trino
FreeTrino is a remarkably fast query engine designed to operate at exceptional speeds. It serves as a high-performance, distributed SQL query engine tailored for big data analytics, enabling users to delve into their vast data environments. Constructed for optimal efficiency, Trino excels in low-latency analytics and is extensively utilized by some of the largest enterprises globally to perform queries on exabyte-scale data lakes and enormous data warehouses. It accommodates a variety of scenarios, including interactive ad-hoc analytics, extensive batch queries spanning several hours, and high-throughput applications that require rapid sub-second query responses. Trino adheres to ANSI SQL standards, making it compatible with popular business intelligence tools like R, Tableau, Power BI, and Superset. Moreover, it allows direct querying of data from various sources such as Hadoop, S3, Cassandra, and MySQL, eliminating the need for cumbersome, time-consuming, and error-prone data copying processes. This capability empowers users to access and analyze data from multiple systems seamlessly within a single query. Such versatility makes Trino a powerful asset in today's data-driven landscape. -
8
Hydrolix
Hydrolix
$2,237 per monthHydrolix serves as a streaming data lake that integrates decoupled storage, indexed search, and stream processing, enabling real-time query performance at a terabyte scale while significantly lowering costs. CFOs appreciate the remarkable 4x decrease in data retention expenses, while product teams are thrilled to have four times more data at their disposal. You can easily activate resources when needed and scale down to zero when they are not in use. Additionally, you can optimize resource usage and performance tailored to each workload, allowing for better cost management. Imagine the possibilities for your projects when budget constraints no longer force you to limit your data access. You can ingest, enhance, and transform log data from diverse sources such as Kafka, Kinesis, and HTTP, ensuring you retrieve only the necessary information regardless of the data volume. This approach not only minimizes latency and costs but also eliminates timeouts and ineffective queries. With storage being independent from ingestion and querying processes, each aspect can scale independently to achieve both performance and budget goals. Furthermore, Hydrolix's high-density compression (HDX) often condenses 1TB of data down to an impressive 55GB, maximizing storage efficiency. By leveraging such innovative capabilities, organizations can fully harness their data potential without financial constraints. -
9
Azure Data Lake Storage
Microsoft
Break down data silos through a unified storage solution that effectively optimizes expenses by employing tiered storage and comprehensive policy management. Enhance data authentication with Azure Active Directory (Azure AD) alongside role-based access control (RBAC), while bolstering data protection with features such as encryption at rest and advanced threat protection. This approach ensures a highly secure environment with adaptable mechanisms for safeguarding access, encryption, and network-level governance. Utilizing a singular storage platform, you can seamlessly ingest, process, and visualize data while supporting prevalent analytics frameworks. Cost efficiency is further achieved through the independent scaling of storage and compute resources, lifecycle policy management, and object-level tiering. With Azure's extensive global infrastructure, you can effortlessly meet diverse capacity demands and manage data efficiently. Additionally, conduct large-scale analytical queries with consistently high performance, ensuring that your data management meets both current and future needs. -
10
doolytic
doolytic
Doolytic is at the forefront of big data discovery, integrating data exploration, advanced analytics, and the vast potential of big data. The company is empowering skilled BI users to participate in a transformative movement toward self-service big data exploration, uncovering the inherent data scientist within everyone. As an enterprise software solution, doolytic offers native discovery capabilities specifically designed for big data environments. Built on cutting-edge, scalable, open-source technologies, doolytic ensures lightning-fast performance, managing billions of records and petabytes of information seamlessly. It handles structured, unstructured, and real-time data from diverse sources, providing sophisticated query capabilities tailored for expert users while integrating with R for advanced analytics and predictive modeling. Users can effortlessly search, analyze, and visualize data from any format and source in real-time, thanks to the flexible architecture of Elastic. By harnessing the capabilities of Hadoop data lakes, doolytic eliminates latency and concurrency challenges, addressing common BI issues and facilitating big data discovery without cumbersome or inefficient alternatives. With doolytic, organizations can truly unlock the full potential of their data assets. -
11
Azure Databricks
Microsoft
Harness the power of your data and create innovative artificial intelligence (AI) solutions using Azure Databricks, where you can establish your Apache Spark™ environment in just minutes, enable autoscaling, and engage in collaborative projects within a dynamic workspace. This platform accommodates multiple programming languages such as Python, Scala, R, Java, and SQL, along with popular data science frameworks and libraries like TensorFlow, PyTorch, and scikit-learn. With Azure Databricks, you can access the most current versions of Apache Spark and effortlessly connect with various open-source libraries. You can quickly launch clusters and develop applications in a fully managed Apache Spark setting, benefiting from Azure's expansive scale and availability. The clusters are automatically established, optimized, and adjusted to guarantee reliability and performance, eliminating the need for constant oversight. Additionally, leveraging autoscaling and auto-termination features can significantly enhance your total cost of ownership (TCO), making it an efficient choice for data analysis and AI development. This powerful combination of tools and resources empowers teams to innovate and accelerate their projects like never before. -
12
Delta Lake
Delta Lake
Delta Lake serves as an open-source storage layer that integrates ACID transactions into Apache Spark™ and big data operations. In typical data lakes, multiple pipelines operate simultaneously to read and write data, which often forces data engineers to engage in a complex and time-consuming effort to maintain data integrity because transactional capabilities are absent. By incorporating ACID transactions, Delta Lake enhances data lakes and ensures a high level of consistency with its serializability feature, the most robust isolation level available. For further insights, refer to Diving into Delta Lake: Unpacking the Transaction Log. In the realm of big data, even metadata can reach substantial sizes, and Delta Lake manages metadata with the same significance as the actual data, utilizing Spark's distributed processing strengths for efficient handling. Consequently, Delta Lake is capable of managing massive tables that can scale to petabytes, containing billions of partitions and files without difficulty. Additionally, Delta Lake offers data snapshots, which allow developers to retrieve and revert to previous data versions, facilitating audits, rollbacks, or the replication of experiments while ensuring data reliability and consistency across the board. -
13
Varada
Varada
Varada offers a cutting-edge big data indexing solution that adeptly balances performance and cost while eliminating the need for data operations. This distinct technology acts as an intelligent acceleration layer within your data lake, which remains the central source of truth and operates within the customer's cloud infrastructure (VPC). By empowering data teams to operationalize their entire data lake, Varada facilitates data democratization while ensuring fast, interactive performance, all without requiring data relocation, modeling, or manual optimization. The key advantage lies in Varada's capability to automatically and dynamically index pertinent data, maintaining the structure and granularity of the original source. Additionally, Varada ensures that any query can keep pace with the constantly changing performance and concurrency demands of users and analytics APIs, while also maintaining predictable cost management. The platform intelligently determines which queries to accelerate and which datasets to index, while also flexibly adjusting the cluster to match demand, thereby optimizing both performance and expenses. This holistic approach to data management not only enhances operational efficiency but also allows organizations to remain agile in an ever-evolving data landscape. -
14
IBM Db2 Big SQL
IBM
IBM Db2 Big SQL is a sophisticated hybrid SQL-on-Hadoop engine that facilitates secure and advanced data querying across a range of enterprise big data sources, such as Hadoop, object storage, and data warehouses. This enterprise-grade engine adheres to ANSI standards and provides massively parallel processing (MPP) capabilities, enhancing the efficiency of data queries. With Db2 Big SQL, users can execute a single database connection or query that spans diverse sources, including Hadoop HDFS, WebHDFS, relational databases, NoSQL databases, and object storage solutions. It offers numerous advantages, including low latency, high performance, robust data security, compatibility with SQL standards, and powerful federation features, enabling both ad hoc and complex queries. Currently, Db2 Big SQL is offered in two distinct variations: one that integrates seamlessly with Cloudera Data Platform and another as a cloud-native service on the IBM Cloud Pak® for Data platform. This versatility allows organizations to access and analyze data effectively, performing queries on both batch and real-time data across various sources, thus streamlining their data operations and decision-making processes. In essence, Db2 Big SQL provides a comprehensive solution for managing and querying extensive datasets in an increasingly complex data landscape. -
15
Exasol
Exasol
An in-memory, column-oriented database combined with a Massively Parallel Processing (MPP) architecture enables the rapid querying of billions of records within mere seconds. The distribution of queries across all nodes in a cluster ensures linear scalability, accommodating a larger number of users and facilitating sophisticated analytics. The integration of MPP, in-memory capabilities, and columnar storage culminates in a database optimized for exceptional data analytics performance. With various deployment options available, including SaaS, cloud, on-premises, and hybrid solutions, data analysis can be performed in any environment. Automatic tuning of queries minimizes maintenance efforts and reduces operational overhead. Additionally, the seamless integration and efficiency of performance provide enhanced capabilities at a significantly lower cost compared to traditional infrastructure. Innovative in-memory query processing has empowered a social networking company to enhance its performance, handling an impressive volume of 10 billion data sets annually. This consolidated data repository, paired with a high-speed engine, accelerates crucial analytics, leading to better patient outcomes and improved financial results for the organization. As a result, businesses can leverage this technology to make quicker data-driven decisions, ultimately driving further success. -
16
Azure Analysis Services
Microsoft
$0.81 per hour 1 RatingUtilize Azure Resource Manager to quickly establish and deploy an Azure Analysis Services instance, allowing for the swift transfer of your existing models to take full advantage of the cloud's scalability, flexibility, and management features. You can easily scale up, scale down, or temporarily suspend the service, ensuring you only pay for what you actually utilize. Integrate data from diverse sources into a cohesive and reliable BI semantic model that is user-friendly and straightforward. By simplifying the representation of data and its foundational structure, you empower business users with self-service capabilities and facilitate data exploration. This approach significantly accelerates the time-to-insight for large and intricate datasets, ensuring that your BI solutions are responsive and aligned with the demands of your organization. Additionally, leverage DirectQuery to connect with real-time operational data, enabling you to monitor your business dynamics closely. Finally, enhance your data visualization experience by employing your preferred data visualization tools, making insights more accessible and actionable. This comprehensive solution not only enhances data usability but also drives better decision-making within the organization. -
17
Upsolver
Upsolver
Upsolver makes it easy to create a governed data lake, manage, integrate, and prepare streaming data for analysis. Only use auto-generated schema on-read SQL to create pipelines. A visual IDE that makes it easy to build pipelines. Add Upserts to data lake tables. Mix streaming and large-scale batch data. Automated schema evolution and reprocessing of previous state. Automated orchestration of pipelines (no Dags). Fully-managed execution at scale Strong consistency guarantee over object storage Nearly zero maintenance overhead for analytics-ready information. Integral hygiene for data lake tables, including columnar formats, partitioning and compaction, as well as vacuuming. Low cost, 100,000 events per second (billions every day) Continuous lock-free compaction to eliminate the "small file" problem. Parquet-based tables are ideal for quick queries. -
18
MapReduce
Baidu AI Cloud
You have the ability to deploy clusters as needed and automatically manage their scaling, allowing you to concentrate solely on processing, analyzing, and reporting big data. Leveraging years of experience in massively distributed computing, our operations team expertly handles the intricacies of cluster management. During peak demand, clusters can be automatically expanded to enhance computing power, while they can be contracted during quieter periods to minimize costs. A user-friendly management console is available to simplify tasks such as cluster oversight, template customization, task submissions, and monitoring of alerts. By integrating with the BCC, it enables businesses to focus on their core operations during busy times while assisting the BMR in processing big data during idle periods, ultimately leading to reduced overall IT costs. This seamless integration not only streamlines operations but also enhances efficiency across the board. -
19
Kyligence
Kyligence
Kyligence Zen can collect, organize, and analyze your metrics, so you can spend more time taking action. Kyligence Zen, the low-code metrics platform, is the best way to define, collect and analyze your business metrics. It allows users to connect their data sources quickly, define their business metrics in minutes, uncover hidden insights, and share these across their organization. Kyligence Enterprise offers a variety of solutions based on public cloud, on-premises, and private cloud. This allows enterprises of all sizes to simplify multidimensional analyses based on massive data sets according to their needs. Kyligence Enterprise based on Apache Kylin provides sub-second standard SQL queries based upon PB-scale datasets. This simplifies multidimensional data analysis for enterprises, allowing them to quickly discover the business value of massive amounts data and make better business decisions. -
20
AnswerDock
AnswerDock
$495 per month 1 RatingAnswerDock is an innovative analytics platform powered by AI, designed specifically for enterprise use. It enables business users to obtain answers to their inquiries and facilitates quicker, more informed decision-making without relying on data analysts. Users can gain immediate insights from their data warehouses through live queries, compatible with platforms like Snowflake, Amazon Redshift, Microsoft Synapse, and Google BigQuery. Additionally, it allows for the uploading of Excel files and connections to traditional relational databases such as MySQL and SQL Server, along with third-party APIs like Google Analytics. You can explore AnswerDock using a sample retail dataset without the hassle of registration or login. For those interested in using their own data, signing up for the free version provides access to all features. With AnswerDock, business users can effortlessly generate their own reports and dashboards by simply entering their questions, similar to how one would use a web search engine. For instance, if you need a sales report, just type in "Top 10 Sales People by growth in number of leads this quarter," and AnswerDock will conduct the analysis and present the best visualization in an instant, making the process incredibly straightforward and user-friendly. This platform is revolutionizing the way companies interact with their data, empowering them to make data-driven decisions with ease. -
21
IBM DataStage
IBM
Boost the pace of AI innovation through cloud-native data integration offered by IBM Cloud Pak for Data. With AI-driven data integration capabilities accessible from anywhere, the effectiveness of your AI and analytics is directly linked to the quality of the data supporting them. Utilizing a modern container-based architecture, IBM® DataStage® for IBM Cloud Pak® for Data ensures the delivery of superior data. This solution merges top-tier data integration with DataOps, governance, and analytics within a unified data and AI platform. By automating administrative tasks, it helps in lowering total cost of ownership (TCO). The platform's AI-based design accelerators, along with ready-to-use integrations with DataOps and data science services, significantly hasten AI advancements. Furthermore, its parallelism and multicloud integration capabilities enable the delivery of reliable data on a large scale across diverse hybrid or multicloud settings. Additionally, you can efficiently manage the entire data and analytics lifecycle on the IBM Cloud Pak for Data platform, which encompasses a variety of services such as data science, event messaging, data virtualization, and data warehousing, all bolstered by a parallel engine and automated load balancing features. This comprehensive approach ensures that your organization stays ahead in the rapidly evolving landscape of data and AI. -
22
Amazon EMR
Amazon
Amazon EMR stands as the leading cloud-based big data solution for handling extensive datasets through popular open-source frameworks like Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi, and Presto. This platform enables you to conduct Petabyte-scale analyses at a cost that is less than half of traditional on-premises systems and delivers performance more than three times faster than typical Apache Spark operations. For short-duration tasks, you have the flexibility to quickly launch and terminate clusters, incurring charges only for the seconds the instances are active. In contrast, for extended workloads, you can establish highly available clusters that automatically adapt to fluctuating demand. Additionally, if you already utilize open-source technologies like Apache Spark and Apache Hive on-premises, you can seamlessly operate EMR clusters on AWS Outposts. Furthermore, you can leverage open-source machine learning libraries such as Apache Spark MLlib, TensorFlow, and Apache MXNet for data analysis. Integrating with Amazon SageMaker Studio allows for efficient large-scale model training, comprehensive analysis, and detailed reporting, enhancing your data processing capabilities even further. This robust infrastructure is ideal for organizations seeking to maximize efficiency while minimizing costs in their data operations. -
23
Bodo.ai
Bodo.ai
Bodo's robust computing engine, combined with its parallel processing methodology, ensures efficient performance and seamless scalability, accommodating over 10,000 cores and petabytes of data effortlessly. By utilizing standard Python APIs such as Pandas, Bodo accelerates the development process and simplifies maintenance for data science, data engineering, and machine learning tasks. Its bare-metal native code execution minimizes the risk of frequent failures, allowing users to identify and resolve issues before they reach the production stage through comprehensive end-to-end compilation. Experience the agility of experimenting with extensive datasets directly on your laptop, all while benefiting from the intuitive simplicity that Python offers. Moreover, you can create production-ready code without the complications of having to refactor for scalability across large infrastructures, thus streamlining your workflow significantly! -
24
Cazena
Cazena
Cazena's Instant Data Lake significantly reduces the time needed for analytics and AI/ML from several months to just a few minutes. Utilizing its unique automated data platform, Cazena introduces a pioneering SaaS model for data lakes, requiring no operational input from users. Businesses today seek a data lake that can seamlessly accommodate all their data and essential tools for analytics, machine learning, and artificial intelligence. For a data lake to be truly effective, it must ensure secure data ingestion, provide adaptable data storage, manage access and identities, facilitate integration with various tools, and optimize performance among other features. Building cloud data lakes independently can be quite complex and typically necessitates costly specialized teams. Cazena's Instant Cloud Data Lakes are not only designed to be readily operational for data loading and analytics but also come with a fully automated setup. Supported by Cazena’s SaaS Platform, they offer ongoing operational support and self-service access through the user-friendly Cazena SaaS Console. With Cazena's Instant Data Lakes, users have a completely turnkey solution that is primed for secure data ingestion, efficient storage, and comprehensive analytics capabilities, making it an invaluable resource for enterprises looking to harness their data effectively and swiftly. -
25
Indexima Data Hub
Indexima
$3,290 per monthTransform the way you view time in data analytics. With the ability to access your business data almost instantly, you can operate directly from your dashboard without the need to consult the IT team repeatedly. Introducing Indexima DataHub, a revolutionary environment that empowers both operational and functional users to obtain immediate access to their data. Through an innovative fusion of a specialized indexing engine and machine learning capabilities, Indexima enables organizations to streamline and accelerate their analytics processes. Designed for robustness and scalability, this solution allows companies to execute queries on vast amounts of data—potentially up to tens of billions of rows—in mere milliseconds. The Indexima platform facilitates instant analytics on all your data with just a single click. Additionally, thanks to Indexima's new ROI and TCO calculator, you can discover the return on investment for your data platform in just 30 seconds, taking into account infrastructure costs, project deployment duration, and data engineering expenses while enhancing your analytical capabilities. Experience the future of data analytics and unlock unprecedented efficiency in your operations. -
26
Torch.AI Nexus
Torch.AI
Nexus empowers organizations to derive significant insights from various data types, formats, and systems, whether they reside in the cloud or on-premises. By utilizing advanced machine learning algorithms, it processes data in real-time before any storage occurs, ensuring efficiency. It securely connects with diverse data sources and business systems, safeguarding your investment in technological infrastructure. Additionally, Nexus enhances your proprietary data by integrating it with external public data sources, such as social media and geographic information. This innovative approach allows for the extraction of intelligence in unique ways, revealing hidden contexts and correlations through a comprehensive ontological analysis of the data. Furthermore, its composable microservices, which can be easily invoked as code, streamline the integration process with existing data frameworks. With the capability to securely provision and orchestrate multiple services at any scale, Nexus ensures rapid deployment, delivering value to customers within mere hours while continuously adapting to their evolving needs. -
27
Katana Graph
Katana Graph
Streamlined distributed computing significantly enhances graph-analytics performance without requiring extensive infrastructure changes. By incorporating a broader variety of data for standardization and visualization on the graph, insights can be significantly strengthened. The combination of advancements in both graph and deep learning results in efficiencies that facilitate prompt insights on the largest graphs in existence. Katana Graph equips Financial Services firms with the tools to tap into the vast possibilities offered by graph analytics and AI at scale, enabling everything from real-time fraud detection to comprehensive customer insights. Leveraging breakthroughs in high-performance parallel computing (HPC), Katana Graph’s intelligent platform evaluates risks and uncovers customer insights from massive data sets using rapid analytics and AI capabilities that surpass those of alternative graph technologies. This transformative approach allows organizations to stay ahead of trends and make data-driven decisions with confidence. -
28
WarpStream
WarpStream
$2,987 per monthWarpStream serves as a data streaming platform that is fully compatible with Apache Kafka, leveraging object storage to eliminate inter-AZ networking expenses and disk management, while offering infinite scalability within your VPC. The deployment of WarpStream occurs through a stateless, auto-scaling agent binary, which operates without the need for local disk management. This innovative approach allows agents to stream data directly to and from object storage, bypassing local disk buffering and avoiding any data tiering challenges. Users can instantly create new “virtual clusters” through our control plane, accommodating various environments, teams, or projects without the hassle of dedicated infrastructure. With its seamless protocol compatibility with Apache Kafka, WarpStream allows you to continue using your preferred tools and software without any need for application rewrites or proprietary SDKs. By simply updating the URL in your Kafka client library, you can begin streaming immediately, ensuring that you never have to compromise between reliability and cost-effectiveness again. Additionally, this flexibility fosters an environment where innovation can thrive without the constraints of traditional infrastructure. -
29
Qubole
Qubole
Qubole stands out as a straightforward, accessible, and secure Data Lake Platform tailored for machine learning, streaming, and ad-hoc analysis. Our comprehensive platform streamlines the execution of Data pipelines, Streaming Analytics, and Machine Learning tasks across any cloud environment, significantly minimizing both time and effort. No other solution matches the openness and versatility in handling data workloads that Qubole provides, all while achieving a reduction in cloud data lake expenses by more than 50 percent. By enabling quicker access to extensive petabytes of secure, reliable, and trustworthy datasets, we empower users to work with both structured and unstructured data for Analytics and Machine Learning purposes. Users can efficiently perform ETL processes, analytics, and AI/ML tasks in a seamless workflow, utilizing top-tier open-source engines along with a variety of formats, libraries, and programming languages tailored to their data's volume, diversity, service level agreements (SLAs), and organizational regulations. This adaptability ensures that Qubole remains a preferred choice for organizations aiming to optimize their data management strategies while leveraging the latest technological advancements. -
30
Lentiq
Lentiq
Lentiq offers a collaborative data lake as a service that empowers small teams to achieve significant results. It allows users to swiftly execute data science, machine learning, and data analysis within the cloud platform of their choice. With Lentiq, teams can seamlessly ingest data in real time, process and clean it, and share their findings effortlessly. This platform also facilitates the building, training, and internal sharing of models, enabling data teams to collaborate freely and innovate without limitations. Data lakes serve as versatile storage and processing environments, equipped with machine learning, ETL, and schema-on-read querying features, among others. If you’re delving into the realm of data science, a data lake is essential for your success. In today’s landscape, characterized by the Post-Hadoop era, large centralized data lakes have become outdated. Instead, Lentiq introduces data pools—interconnected mini-data lakes across multiple clouds—that work harmoniously to provide a secure, stable, and efficient environment for data science endeavors. This innovative approach enhances the overall agility and effectiveness of data-driven projects. -
31
SigView
Sigmoid
Gain access to detailed data for seamless analysis of billions of rows and achieve real-time reporting in mere seconds! Sigview, a plug-and-play data analytics tool from Sigmoid, simplifies exploratory data analysis and is built on Apache Spark, allowing users to delve into extensive data sets almost instantly. With approximately 30,000 users worldwide leveraging this tool to evaluate billions of ad impressions, Sigview is expertly designed to provide immediate access to both programmatic and non-programmatic data while generating real-time reports. Whether your aim is to enhance ad campaign performance, uncover new inventory, or explore revenue opportunities in an evolving market, Sigview serves as the ultimate platform for your reporting requirements. It seamlessly connects to various data sources, including DFP, Pixel Servers, and audience viewability partners, enabling the ingestion of data in any format and location while ensuring data latency remains below 15 minutes. This capability allows users to make informed decisions quickly and adapt to changing business landscapes with confidence. -
32
Oracle Big Data Service
Oracle
$0.1344 per hourOracle Big Data Service simplifies the deployment of Hadoop clusters for customers, offering a range of VM configurations from 1 OCPU up to dedicated bare metal setups. Users can select between high-performance NVMe storage or more budget-friendly block storage options, and have the flexibility to adjust the size of their clusters as needed. They can swiftly establish Hadoop-based data lakes that either complement or enhance existing data warehouses, ensuring that all data is both easily accessible and efficiently managed. Additionally, the platform allows for querying, visualizing, and transforming data, enabling data scientists to develop machine learning models through an integrated notebook that supports R, Python, and SQL. Furthermore, this service provides the capability to transition customer-managed Hadoop clusters into a fully-managed cloud solution, which lowers management expenses and optimizes resource use, ultimately streamlining operations for organizations of all sizes. By doing so, businesses can focus more on deriving insights from their data rather than on the complexities of cluster management. -
33
Apache Druid
Druid
Apache Druid is a distributed data storage solution that is open source. Its fundamental architecture merges concepts from data warehouses, time series databases, and search technologies to deliver a high-performance analytics database capable of handling a diverse array of applications. By integrating the essential features from these three types of systems, Druid optimizes its ingestion process, storage method, querying capabilities, and overall structure. Each column is stored and compressed separately, allowing the system to access only the relevant columns for a specific query, which enhances speed for scans, rankings, and groupings. Additionally, Druid constructs inverted indexes for string data to facilitate rapid searching and filtering. It also includes pre-built connectors for various platforms such as Apache Kafka, HDFS, and AWS S3, as well as stream processors and others. The system adeptly partitions data over time, making queries based on time significantly quicker than those in conventional databases. Users can easily scale resources by simply adding or removing servers, and Druid will manage the rebalancing automatically. Furthermore, its fault-tolerant design ensures resilience by effectively navigating around any server malfunctions that may occur. This combination of features makes Druid a robust choice for organizations seeking efficient and reliable real-time data analytics solutions. -
34
Vertica
OpenText
The Unified Analytics Warehouse. The Unified Analytics Warehouse is the best place to find high-performing analytics and machine learning at large scale. Tech research analysts are seeing new leaders as they strive to deliver game-changing big data analytics. Vertica empowers data-driven companies so they can make the most of their analytics initiatives. It offers advanced time-series, geospatial, and machine learning capabilities, as well as data lake integration, user-definable extensions, cloud-optimized architecture and more. Vertica's Under the Hood webcast series allows you to dive into the features of Vertica - delivered by Vertica engineers, technical experts, and others - and discover what makes it the most scalable and scalable advanced analytical data database on the market. Vertica supports the most data-driven disruptors around the globe in their pursuit for industry and business transformation. -
35
Azure Data Share
Microsoft
$0.05 per dataset-snapshotEasily distribute data of any format and size from various sources to other organizations while maintaining full control over what you share, who receives it, and the associated terms of use. The Data Share platform offers complete transparency regarding your data-sharing connections through a user-friendly interface, allowing you to share information with just a few clicks or create a custom application via the REST API. This serverless, code-free data-sharing solution eliminates the need for infrastructure setup or management, providing an intuitive interface to oversee all your data-sharing interactions. With automated processes in place, you can achieve greater productivity and predictability in your operations. The service ensures data security by leveraging Azure's robust security measures, enabling the sharing of both structured and unstructured data from a variety of Azure data stores effortlessly. Furthermore, there’s no need for SAS keys, and sharing is entirely code-free, allowing you to dictate data access and define terms of use that comply with your enterprise policies seamlessly. With this tool, organizations can foster collaboration while safeguarding their data integrity and compliance. -
36
Google Cloud Dataproc
Google
Dataproc enhances the speed, simplicity, and security of open source data and analytics processing in the cloud. You can swiftly create tailored OSS clusters on custom machines to meet specific needs. Whether your project requires additional memory for Presto or GPUs for machine learning in Apache Spark, Dataproc facilitates the rapid deployment of specialized clusters in just 90 seconds. The platform offers straightforward and cost-effective cluster management options. Features such as autoscaling, automatic deletion of idle clusters, and per-second billing contribute to minimizing the overall ownership costs of OSS, allowing you to allocate your time and resources more effectively. Built-in security measures, including default encryption, guarantee that all data remains protected. With the JobsAPI and Component Gateway, you can easily manage permissions for Cloud IAM clusters without the need to configure networking or gateway nodes, ensuring a streamlined experience. Moreover, the platform's user-friendly interface simplifies the management process, making it accessible for users at all experience levels. -
37
iceDQ
Torana
$1000iceDQ, a DataOps platform that allows monitoring and testing, is a DataOps platform. iceDQ is an agile rules engine that automates ETL Testing, Data Migration Testing and Big Data Testing. It increases productivity and reduces project timelines for testing data warehouses and ETL projects. Identify data problems in your Data Warehouse, Big Data, and Data Migration Projects. The iceDQ platform can transform your ETL or Data Warehouse Testing landscape. It automates it from end to end, allowing the user to focus on analyzing the issues and fixing them. The first edition of iceDQ was designed to validate and test any volume of data with our in-memory engine. It can perform complex validation using SQL and Groovy. It is optimized for Data Warehouse Testing. It scales based upon the number of cores on a server and is 5X faster that the standard edition. -
38
Starburst Enterprise
Starburst Data
Starburst empowers organizations to enhance their decision-making capabilities by providing rapid access to all their data without the hassle of transferring or duplicating it. As companies accumulate vast amounts of data, their analysis teams often find themselves waiting for access to perform their evaluations. By facilitating direct access to data at its source, Starburst ensures that teams can quickly and accurately analyze larger datasets without the need for data movement. Starburst Enterprise offers a robust, enterprise-grade version of the open-source Trino (formerly known as Presto® SQL), which is fully supported and tested for production use. This solution not only boosts performance and security but also simplifies the deployment, connection, and management of a Trino environment. By enabling connections to any data source—be it on-premises, in the cloud, or within a hybrid cloud setup—Starburst allows teams to utilize their preferred analytics tools while seamlessly accessing data stored in various locations. This innovative approach significantly reduces the time taken for insights, helping businesses stay competitive in a data-driven world. -
39
Kyvos is a semantic data lakehouse designed to speed up every BI and AI initiative, offering lightning-fast analytics at an infinite scale with maximum cost efficiency and the lowest possible carbon footprint. The platform provides high-performance storage for both structured and unstructured data, ensuring trusted data for AI applications. It is built to scale seamlessly, making it an ideal solution for enterprises aiming to maximize their data’s potential. Kyvos is infrastructure-agnostic, which means it fits perfectly into any modern data or AI stack, whether deployed on-premises or in the cloud. Leading companies rely on Kyvos as a unified source for cost-effective, high-performance analytics that foster deep, meaningful insights and context-aware AI application development. By leveraging Kyvos, organizations can break through data barriers, accelerate decision-making, and enhance their AI-driven initiatives. The platform's flexibility allows businesses to create a scalable foundation for a range of data-driven solutions.
-
40
Alooma
Google
Alooma provides data teams with the ability to monitor and manage their data effectively. It consolidates information from disparate data silos into BigQuery instantly, allowing for real-time data integration. Users can set up data flows in just a few minutes, or opt to customize, enhance, and transform their data on-the-fly prior to it reaching the data warehouse. With Alooma, no event is ever lost thanks to its integrated safety features that facilitate straightforward error management without interrupting the pipeline. Whether dealing with a few data sources or a multitude, Alooma's flexible architecture adapts to meet your requirements seamlessly. This capability ensures that organizations can efficiently handle their data demands regardless of scale or complexity. -
41
Oracle Cloud Infrastructure Data Flow
Oracle
$0.0085 per GB per hourOracle Cloud Infrastructure (OCI) Data Flow is a comprehensive managed service for Apache Spark, enabling users to execute processing tasks on enormous data sets without the burden of deploying or managing infrastructure. This capability accelerates the delivery of applications, allowing developers to concentrate on building their apps rather than dealing with infrastructure concerns. OCI Data Flow autonomously manages the provisioning of infrastructure, network configurations, and dismantling after Spark jobs finish. It also oversees storage and security, significantly reducing the effort needed to create and maintain Spark applications for large-scale data analysis. Furthermore, with OCI Data Flow, there are no clusters that require installation, patching, or upgrading, which translates to both time savings and reduced operational expenses for various projects. Each Spark job is executed using private dedicated resources, which removes the necessity for prior capacity planning. Consequently, organizations benefit from a pay-as-you-go model, only incurring costs for the infrastructure resources utilized during the execution of Spark jobs. This innovative approach not only streamlines the process but also enhances scalability and flexibility for data-driven applications. -
42
Visokio creates Omniscope Evo, a complete and extensible BI tool for data processing, analysis, and reporting. Smart experience on any device. You can start with any data, any format, load, edit, combine, transform it while visually exploring it. You can extract insights through ML algorithms and automate your data workflows. Omniscope is a powerful BI tool that can be used on any device. It also has a responsive UX and is mobile-friendly. You can also augment data workflows using Python / R scripts or enhance reports with any JS visualisation. Omniscope is the complete solution for data managers, scientists, analysts, and data managers. It can be used to visualize data, analyze data, and visualise it.
-
43
BigObject
BigObject
At the core of our innovative approach lies in-data computing, a cutting-edge technology aimed at efficiently processing substantial volumes of data. Our leading product, BigObject, is a prime example of this technology; it is a time series database purposefully created to enable rapid storage and management of vast data sets. Leveraging in-data computing, BigObject has the capability to swiftly and continuously address diverse data streams without interruption. This time series database excels in both high-speed storage and data analysis, showcasing remarkable performance alongside robust complex query functionalities. By transitioning from a traditional relational data structure to a time-series model, it harnesses in-data computing to enhance overall database efficiency. The foundation of our technology is an abstract model, wherein all data resides within an infinite and persistent memory space, facilitating seamless storage and computation. This unique architecture not only optimizes performance but also paves the way for future advancements in data processing capabilities. -
44
Hopsworks
Logical Clocks
$1 per monthHopsworks is a comprehensive open-source platform designed to facilitate the creation and management of scalable Machine Learning (ML) pipelines, featuring the industry's pioneering Feature Store for ML. Users can effortlessly transition from data analysis and model creation in Python, utilizing Jupyter notebooks and conda, to executing robust, production-ready ML pipelines without needing to acquire knowledge about managing a Kubernetes cluster. The platform is capable of ingesting data from a variety of sources, whether they reside in the cloud, on-premise, within IoT networks, or stem from your Industry 4.0 initiatives. You have the flexibility to deploy Hopsworks either on your own infrastructure or via your chosen cloud provider, ensuring a consistent user experience regardless of the deployment environment, be it in the cloud or a highly secure air-gapped setup. Moreover, Hopsworks allows you to customize alerts for various events triggered throughout the ingestion process, enhancing your workflow efficiency. This makes it an ideal choice for teams looking to streamline their ML operations while maintaining control over their data environments. -
45
GeoSpock
GeoSpock
GeoSpock revolutionizes data integration for a connected universe through its innovative GeoSpock DB, a cutting-edge space-time analytics database. This cloud-native solution is specifically designed for effective querying of real-world scenarios, enabling the combination of diverse Internet of Things (IoT) data sources to fully harness their potential, while also streamlining complexity and reducing expenses. With GeoSpock DB, users benefit from efficient data storage, seamless fusion, and quick programmatic access, allowing for the execution of ANSI SQL queries and the ability to link with analytics platforms through JDBC/ODBC connectors. Analysts can easily conduct evaluations and disseminate insights using familiar toolsets, with compatibility for popular business intelligence tools like Tableau™, Amazon QuickSight™, and Microsoft Power BI™, as well as support for data science and machine learning frameworks such as Python Notebooks and Apache Spark. Furthermore, the database can be effortlessly integrated with internal systems and web services, ensuring compatibility with open-source and visualization libraries, including Kepler and Cesium.js, thus expanding its versatility in various applications. This comprehensive approach empowers organizations to make data-driven decisions efficiently and effectively.