Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Easily create and execute highly parallel data transformation and processing tasks using U-SQL, R, Python, and .NET across vast amounts of data. With no need to manage infrastructure, you can process data on demand, scale up instantly, and incur costs only per job. Azure Data Lake Analytics allows you to complete big data tasks in mere seconds. There’s no infrastructure to manage since there are no servers, virtual machines, or clusters that require monitoring or tuning. You can quickly adjust the processing capacity, measured in Azure Data Lake Analytics Units (AU), from one to thousands for every job. Payment is based solely on the processing used for each job. Take advantage of optimized data virtualization for your relational sources like Azure SQL Database and Azure Synapse Analytics. Your queries benefit from automatic optimization, as processing is performed close to the source data without requiring data movement, thereby enhancing performance and reducing latency. Additionally, this setup enables organizations to efficiently utilize their data resources and respond swiftly to analytical needs.
Description
An in-memory, column-oriented database combined with a Massively Parallel Processing (MPP) architecture enables the rapid querying of billions of records within mere seconds. The distribution of queries across all nodes in a cluster ensures linear scalability, accommodating a larger number of users and facilitating sophisticated analytics. The integration of MPP, in-memory capabilities, and columnar storage culminates in a database optimized for exceptional data analytics performance. With various deployment options available, including SaaS, cloud, on-premises, and hybrid solutions, data analysis can be performed in any environment. Automatic tuning of queries minimizes maintenance efforts and reduces operational overhead. Additionally, the seamless integration and efficiency of performance provide enhanced capabilities at a significantly lower cost compared to traditional infrastructure. Innovative in-memory query processing has empowered a social networking company to enhance its performance, handling an impressive volume of 10 billion data sets annually. This consolidated data repository, paired with a high-speed engine, accelerates crucial analytics, leading to better patient outcomes and improved financial results for the organization. As a result, businesses can leverage this technology to make quicker data-driven decisions, ultimately driving further success.
API Access
Has API
API Access
Has API
Integrations
Alteryx
Apache Superset
Astro
Azure Marketplace
CONVAYR
DataClarity Unlimited Analytics
DataGrip
DbVisualizer
Gravity Data
InsightFinder
Integrations
Alteryx
Apache Superset
Astro
Azure Marketplace
CONVAYR
DataClarity Unlimited Analytics
DataGrip
DbVisualizer
Gravity Data
InsightFinder
Pricing Details
$2 per hour
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Microsoft
Founded
1975
Country
United States
Website
azure.microsoft.com/en-us/services/data-lake-analytics/
Vendor Details
Company Name
Exasol
Country
Germany
Website
www.exasol.com
Product Features
Big Data
Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates
Product Features
Big Data
Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates