Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Easily create and execute highly parallel data transformation and processing tasks using U-SQL, R, Python, and .NET across vast amounts of data. With no need to manage infrastructure, you can process data on demand, scale up instantly, and incur costs only per job. Azure Data Lake Analytics allows you to complete big data tasks in mere seconds. There’s no infrastructure to manage since there are no servers, virtual machines, or clusters that require monitoring or tuning. You can quickly adjust the processing capacity, measured in Azure Data Lake Analytics Units (AU), from one to thousands for every job. Payment is based solely on the processing used for each job. Take advantage of optimized data virtualization for your relational sources like Azure SQL Database and Azure Synapse Analytics. Your queries benefit from automatic optimization, as processing is performed close to the source data without requiring data movement, thereby enhancing performance and reducing latency. Additionally, this setup enables organizations to efficiently utilize their data resources and respond swiftly to analytical needs.

Description

An in-memory, column-oriented database combined with a Massively Parallel Processing (MPP) architecture enables the rapid querying of billions of records within mere seconds. The distribution of queries across all nodes in a cluster ensures linear scalability, accommodating a larger number of users and facilitating sophisticated analytics. The integration of MPP, in-memory capabilities, and columnar storage culminates in a database optimized for exceptional data analytics performance. With various deployment options available, including SaaS, cloud, on-premises, and hybrid solutions, data analysis can be performed in any environment. Automatic tuning of queries minimizes maintenance efforts and reduces operational overhead. Additionally, the seamless integration and efficiency of performance provide enhanced capabilities at a significantly lower cost compared to traditional infrastructure. Innovative in-memory query processing has empowered a social networking company to enhance its performance, handling an impressive volume of 10 billion data sets annually. This consolidated data repository, paired with a high-speed engine, accelerates crucial analytics, leading to better patient outcomes and improved financial results for the organization. As a result, businesses can leverage this technology to make quicker data-driven decisions, ultimately driving further success.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Alteryx
Apache Superset
Astro
Azure Marketplace
CONVAYR
DataClarity Unlimited Analytics
DataGrip
DbVisualizer
Gravity Data
InsightFinder
Microsoft Azure
Microsoft Power Query
Openbridge
Preset
Pyramid Analytics
Sqitch
Starburst Enterprise
TiMi
VIENNA Advantage ERP/CRM
Zoho DataPrep

Integrations

Alteryx
Apache Superset
Astro
Azure Marketplace
CONVAYR
DataClarity Unlimited Analytics
DataGrip
DbVisualizer
Gravity Data
InsightFinder
Microsoft Azure
Microsoft Power Query
Openbridge
Preset
Pyramid Analytics
Sqitch
Starburst Enterprise
TiMi
VIENNA Advantage ERP/CRM
Zoho DataPrep

Pricing Details

$2 per hour
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Microsoft

Founded

1975

Country

United States

Website

azure.microsoft.com/en-us/services/data-lake-analytics/

Vendor Details

Company Name

Exasol

Country

Germany

Website

www.exasol.com

Product Features

Big Data

Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates

Product Features

Big Data

Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates

Alternatives

Alternatives

Azure HDInsight Reviews

Azure HDInsight

Microsoft
eXtremeDB Reviews

eXtremeDB

McObject
Apache Spark Reviews

Apache Spark

Apache Software Foundation