Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Anticipate issues before they arise by utilizing an Azure AI anomaly detection service. This service allows for the seamless integration of time-series anomaly detection features into applications, enabling users to quickly pinpoint problems. The AI Anomaly Detector processes various types of time-series data and intelligently chooses the most effective anomaly detection algorithm tailored to your specific dataset, ensuring superior accuracy. It can identify sudden spikes, drops, deviations from established patterns, and changes in trends using both univariate and multivariate APIs. Users can personalize the service to recognize different levels of anomalies based on their needs. The anomaly detection service can be deployed flexibly, whether in the cloud or at the intelligent edge. With a robust inference engine, the service evaluates your time-series dataset and automatically determines the ideal detection algorithm, enhancing accuracy for your unique context. This automatic detection process removes the necessity for labeled training data, enabling you to save valuable time and concentrate on addressing issues promptly as they arise. By leveraging advanced technology, organizations can enhance their operational efficiency and maintain a proactive approach to problem-solving.

Description

In 30 minutes, you can monitor your entire warehouse. Automated warehouse-to-BI lineage can identify downstream impacts. Trust can be lost in seconds and regained in months. With modern data-era observability, you can have peace of mind. It can be difficult to get the coverage you need with code-based tests. They take hours to create and maintain. Metaplane allows you to add hundreds of tests in minutes. Foundational tests (e.g. We support foundational tests (e.g. row counts, freshness and schema drift), more complicated tests (distribution shifts, nullness shiftings, enum modifications), custom SQL, as well as everything in between. Manual thresholds can take a while to set and quickly become outdated as your data changes. Our anomaly detection algorithms use historical metadata to detect outliers. To minimize alert fatigue, monitor what is important, while also taking into account seasonality, trends and feedback from your team. You can also override manual thresholds.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Amazon Redshift
Bing
CTM360
ClickHouse
Crestwood Cloud
Gmail
Google Cloud BigQuery
Metabase
Microsoft Azure
Microsoft Office 2021
Mode
MySQL
Okta
PagerDuty
Rayven
SQL Server
Secoda
Sigma
Slack
Tableau

Integrations

Amazon Redshift
Bing
CTM360
ClickHouse
Crestwood Cloud
Gmail
Google Cloud BigQuery
Metabase
Microsoft Azure
Microsoft Office 2021
Mode
MySQL
Okta
PagerDuty
Rayven
SQL Server
Secoda
Sigma
Slack
Tableau

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

$825 per month
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Microsoft

Founded

1975

Country

United States

Website

azure.microsoft.com/en-us/products/ai-services/ai-anomaly-detector/

Vendor Details

Company Name

Metaplane

Country

United States

Website

www.metaplane.dev/

Product Features

Product Features

Data Lineage

Database Change Impact Analysis
Filter Lineage Links
Implicit Connection Discovery
Lineage Object Filtering
Object Lineage Tracing
Point-in-Time Visibility
User/Client/Target Connection Visibility
Visual & Text Lineage View

Data Quality

Address Validation
Data Deduplication
Data Discovery
Data Profililng
Master Data Management
Match & Merge
Metadata Management

Alternatives

Alternatives