Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Auger.AI delivers the most comprehensive solution for maintaining the accuracy of machine learning models. Our MLRAM tool (Machine Learning Review and Monitoring) guarantees that your models maintain their accuracy over time. It even assesses the return on investment for your predictive models! MLRAM is compatible with any machine learning technology stack. If your ML system lifecycle lacks ongoing measurement of model accuracy, you could be forfeiting profits due to erroneous predictions. Additionally, frequently retraining models can be costly and may not resolve issues caused by concept drift. MLRAM offers significant benefits for both data scientists and business professionals, featuring tools such as accuracy visualization graphs, performance and accuracy notifications, anomaly detection, and automated optimized retraining. Integrating your predictive model with MLRAM requires just a single line of code, making the process seamless. We also provide a complimentary one-month trial of MLRAM for eligible users. Ultimately, Auger.AI stands out as the most precise AutoML platform available, ensuring that your machine learning initiatives are both effective and efficient.
Description
Deep learning frameworks like TensorFlow, PyTorch, Caffe, Torch, Theano, and MXNet have significantly enhanced the accessibility of deep learning by simplifying the design, training, and application of deep learning models. Fabric for Deep Learning (FfDL, pronounced “fiddle”) offers a standardized method for deploying these deep-learning frameworks as a service on Kubernetes, ensuring smooth operation. The architecture of FfDL is built on microservices, which minimizes the interdependence between components, promotes simplicity, and maintains a stateless nature for each component. This design choice also helps to isolate failures, allowing for independent development, testing, deployment, scaling, and upgrading of each element. By harnessing the capabilities of Kubernetes, FfDL delivers a highly scalable, resilient, and fault-tolerant environment for deep learning tasks. Additionally, the platform incorporates a distribution and orchestration layer that enables efficient learning from large datasets across multiple compute nodes within a manageable timeframe. This comprehensive approach ensures that deep learning projects can be executed with both efficiency and reliability.
API Access
Has API
API Access
Has API
Integrations
TensorFlow
Amazon Web Services (AWS)
Caffe
Google Cloud Platform
Kubernetes
Microsoft Azure
PyTorch
Torch
Integrations
TensorFlow
Amazon Web Services (AWS)
Caffe
Google Cloud Platform
Kubernetes
Microsoft Azure
PyTorch
Torch
Pricing Details
$200 per month
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Auger.AI
Founded
2019
Country
United States
Website
auger.ai/
Vendor Details
Company Name
IBM
Founded
1911
Country
United States
Website
developer.ibm.com/open/projects/fabric-for-deep-learning-ffdl/
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization