Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Apache TinkerPop™ serves as a framework for graph computing, catering to both online transaction processing (OLTP) with graph databases and online analytical processing (OLAP) through graph analytic systems. The traversal language utilized within Apache TinkerPop is known as Gremlin, which is a functional, data-flow language designed to allow users to effectively articulate intricate traversals or queries related to their application's property graph. Each traversal in Gremlin consists of a series of steps that can be nested. In graph theory, a graph is defined as a collection of vertices and edges. Both these components can possess multiple key/value pairs referred to as properties. Vertices represent distinct entities, which may include individuals, locations, or events, while edges signify the connections among these vertices. For example, one individual might have connections to another, have participated in a certain event, or have been at a specific location recently. This framework is particularly useful when a user's domain encompasses a diverse array of objects that can be interconnected in various ways. Moreover, the versatility of Gremlin enhances the ability to navigate complex relationships within the graph structure seamlessly.
Description
Graph Engine (GE) is a powerful distributed in-memory data processing platform that relies on a strongly-typed RAM storage system paired with a versatile distributed computation engine. This RAM store functions as a high-performance key-value store that is accessible globally across a cluster of machines. By leveraging this RAM store, GE facilitates rapid random data access over extensive distributed datasets. Its ability to perform swift data exploration and execute distributed parallel computations positions GE as an ideal solution for processing large graphs. The engine effectively accommodates both low-latency online query processing and high-throughput offline analytics for graphs containing billions of nodes. Efficient data processing emphasizes the importance of schema, as strongly-typed data models are vital for optimizing storage, accelerating data retrieval, and ensuring clear data semantics. GE excels in the management of billions of runtime objects, regardless of their size, demonstrating remarkable efficiency. Even minor variations in object count can significantly impact performance, underscoring the importance of every byte. Moreover, GE offers rapid memory allocation and reallocation, achieving impressive memory utilization ratios that further enhance its capabilities. This makes GE not only efficient but also an invaluable tool for developers and data scientists working with large-scale data environments.
API Access
Has API
API Access
Has API
Integrations
Apache Groovy
Docker
G.V() - Gremlin IDE
Java
Node.js
Python
Integrations
Apache Groovy
Docker
G.V() - Gremlin IDE
Java
Node.js
Python
Pricing Details
Free
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Apache Software Foundation
Country
United States
Website
tinkerpop.apache.org
Vendor Details
Company Name
Microsoft
Founded
1975
Country
United States
Website
www.graphengine.io