Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 1 Rating

Total
ease
features
design
support

Description

Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics.

Description

Pandas is an open-source data analysis and manipulation tool that is not only fast and powerful but also highly flexible and user-friendly, all within the Python programming ecosystem. It provides various tools for importing and exporting data across different formats, including CSV, text files, Microsoft Excel, SQL databases, and the efficient HDF5 format. With its intelligent data alignment capabilities and integrated management of missing values, users benefit from automatic label-based alignment during computations, which simplifies the process of organizing disordered data. The library features a robust group-by engine that allows for sophisticated aggregating and transforming operations, enabling users to easily perform split-apply-combine actions on their datasets. Additionally, pandas offers extensive time series functionality, including the ability to generate date ranges, convert frequencies, and apply moving window statistics, as well as manage date shifting and lagging. Users can even create custom time offsets tailored to specific domains and join time series data without the risk of losing any information. This comprehensive set of features makes pandas an essential tool for anyone working with data in Python.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Activeeon ProActive
Amazon SageMaker Data Wrangler
Daft
Dagster+
Flyte
Kedro
RunCode
TeamStation
Yandex Data Proc
Acxiom Real Identity
BigLake
Deequ
IBM Analytics Engine
MLJAR Studio
MLlib
Quantexa
SQL
Spark Streaming
Vertex AI Notebooks
matchit

Integrations

Activeeon ProActive
Amazon SageMaker Data Wrangler
Daft
Dagster+
Flyte
Kedro
RunCode
TeamStation
Yandex Data Proc
Acxiom Real Identity
BigLake
Deequ
IBM Analytics Engine
MLJAR Studio
MLlib
Quantexa
SQL
Spark Streaming
Vertex AI Notebooks
matchit

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Apache Software Foundation

Founded

1999

Country

United States

Website

spark.apache.org

Vendor Details

Company Name

pandas

Founded

2008

Website

pandas.pydata.org

Product Features

Big Data

Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates

Data Analysis

Data Discovery
Data Visualization
High Volume Processing
Predictive Analytics
Regression Analysis
Sentiment Analysis
Statistical Modeling
Text Analytics

Streaming Analytics

Data Enrichment
Data Wrangling / Data Prep
Multiple Data Source Support
Process Automation
Real-time Analysis / Reporting
Visualization Dashboards

Product Features

Data Analysis

Data Discovery
Data Visualization
High Volume Processing
Predictive Analytics
Regression Analysis
Sentiment Analysis
Statistical Modeling
Text Analytics

Alternatives

Amazon EMR Reviews

Amazon EMR

Amazon

Alternatives

ML.NET Reviews

ML.NET

Microsoft
Apache Airflow Reviews

Apache Airflow

The Apache Software Foundation