Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Iceberg is an advanced format designed for managing extensive analytical tables efficiently. It combines the dependability and ease of SQL tables with the capabilities required for big data, enabling multiple engines such as Spark, Trino, Flink, Presto, Hive, and Impala to access and manipulate the same tables concurrently without issues. The format allows for versatile SQL operations to incorporate new data, modify existing records, and execute precise deletions. Additionally, Iceberg can optimize read performance by eagerly rewriting data files or utilize delete deltas to facilitate quicker updates. It also streamlines the complex and often error-prone process of generating partition values for table rows while automatically bypassing unnecessary partitions and files. Fast queries do not require extra filtering, and the structure of the table can be adjusted dynamically as data and query patterns evolve, ensuring efficiency and adaptability in data management. This adaptability makes Iceberg an essential tool in modern data workflows.
Description
Hydrolix serves as a streaming data lake that integrates decoupled storage, indexed search, and stream processing, enabling real-time query performance at a terabyte scale while significantly lowering costs. CFOs appreciate the remarkable 4x decrease in data retention expenses, while product teams are thrilled to have four times more data at their disposal. You can easily activate resources when needed and scale down to zero when they are not in use. Additionally, you can optimize resource usage and performance tailored to each workload, allowing for better cost management. Imagine the possibilities for your projects when budget constraints no longer force you to limit your data access. You can ingest, enhance, and transform log data from diverse sources such as Kafka, Kinesis, and HTTP, ensuring you retrieve only the necessary information regardless of the data volume. This approach not only minimizes latency and costs but also eliminates timeouts and ineffective queries. With storage being independent from ingestion and querying processes, each aspect can scale independently to achieve both performance and budget goals. Furthermore, Hydrolix's high-density compression (HDX) often condenses 1TB of data down to an impressive 55GB, maximizing storage efficiency. By leveraging such innovative capabilities, organizations can fully harness their data potential without financial constraints.
API Access
Has API
API Access
Has API
Integrations
SQL
Akamai
Amazon EKS
Amazon Kinesis
Amazon S3
Amazon Web Services (AWS)
Apache Flink
Apache Kafka
Apache Spark
Azure Blob Storage
Integrations
SQL
Akamai
Amazon EKS
Amazon Kinesis
Amazon S3
Amazon Web Services (AWS)
Apache Flink
Apache Kafka
Apache Spark
Azure Blob Storage
Pricing Details
Free
Free Trial
Free Version
Pricing Details
$2,237 per month
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Apache Software Foundation
Founded
1999
Country
United States
Website
iceberg.apache.org
Vendor Details
Company Name
Hydrolix
Country
Canada
Website
www.hydrolix.io
Product Features
Big Data
Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates