Average Ratings 1 Rating
Average Ratings 0 Ratings
Description
Apache Hive is a data warehouse solution that enables the efficient reading, writing, and management of substantial datasets stored across distributed systems using SQL. It allows users to apply structure to pre-existing data in storage. To facilitate user access, it comes equipped with a command line interface and a JDBC driver. As an open-source initiative, Apache Hive is maintained by dedicated volunteers at the Apache Software Foundation. Initially part of the Apache® Hadoop® ecosystem, it has since evolved into an independent top-level project. We invite you to explore the project further and share your knowledge to enhance its development. Users typically implement traditional SQL queries through the MapReduce Java API, which can complicate the execution of SQL applications on distributed data. However, Hive simplifies this process by offering a SQL abstraction that allows for the integration of SQL-like queries, known as HiveQL, into the underlying Java framework, eliminating the need to delve into the complexities of the low-level Java API. This makes working with large datasets more accessible and efficient for developers.
Description
Hudi serves as a robust platform for constructing streaming data lakes equipped with incremental data pipelines, all while utilizing a self-managing database layer that is finely tuned for lake engines and conventional batch processing. It effectively keeps a timeline of every action taken on the table at various moments, enabling immediate views of the data while also facilitating the efficient retrieval of records in the order they were received. Each Hudi instant is composed of several essential components, allowing for streamlined operations. The platform excels in performing efficient upserts by consistently linking a specific hoodie key to a corresponding file ID through an indexing system. This relationship between record key and file group or file ID remains constant once the initial version of a record is written to a file, ensuring stability in data management. Consequently, the designated file group encompasses all iterations of a collection of records, allowing for seamless data versioning and retrieval. This design enhances both the reliability and efficiency of data operations within the Hudi ecosystem.
API Access
Has API
API Access
Has API
Integrations
Apache Doris
Apache Spark
DataHub
e6data
AWS Marketplace
Activeeon ProActive
Amazon Redshift
Apache Avro
Apache Hudi
Apache Knox
Integrations
Apache Doris
Apache Spark
DataHub
e6data
AWS Marketplace
Activeeon ProActive
Amazon Redshift
Apache Avro
Apache Hudi
Apache Knox
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Apache Software Foundation
Founded
1999
Country
United States
Website
hive.apache.org
Vendor Details
Company Name
Apache Corporation
Founded
1954
Country
United States
Website
hudi.apache.org
Product Features
ETL
Data Analysis
Data Filtering
Data Quality Control
Job Scheduling
Match & Merge
Metadata Management
Non-Relational Transformations
Version Control
Product Features
Data Warehouse
Ad hoc Query
Analytics
Data Integration
Data Migration
Data Quality Control
ETL - Extract / Transfer / Load
In-Memory Processing
Match & Merge