Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Amazon SageMaker Model Training streamlines the process of training and fine-tuning machine learning (ML) models at scale, significantly cutting down both time and costs while eliminating the need for infrastructure management. Users can leverage top-tier ML compute infrastructure, benefiting from SageMaker’s capability to seamlessly scale from a single GPU to thousands, adapting to demand as necessary. The pay-as-you-go model enables more effective management of training expenses, making it easier to keep costs in check. To accelerate the training of deep learning models, SageMaker’s distributed training libraries can divide extensive models and datasets across multiple AWS GPU instances, while also supporting third-party libraries like DeepSpeed, Horovod, or Megatron for added flexibility. Additionally, you can efficiently allocate system resources by choosing from a diverse range of GPUs and CPUs, including the powerful P4d.24xl instances, which are currently the fastest cloud training options available. With just one click, you can specify data locations and the desired SageMaker instances, simplifying the entire setup process for users. This user-friendly approach makes it accessible for both newcomers and experienced data scientists to maximize their ML training capabilities.

Description

DeepSpeed is an open-source library focused on optimizing deep learning processes for PyTorch. Its primary goal is to enhance efficiency by minimizing computational power and memory requirements while facilitating the training of large-scale distributed models with improved parallel processing capabilities on available hardware. By leveraging advanced techniques, DeepSpeed achieves low latency and high throughput during model training. This tool can handle deep learning models with parameter counts exceeding one hundred billion on contemporary GPU clusters, and it is capable of training models with up to 13 billion parameters on a single graphics processing unit. Developed by Microsoft, DeepSpeed is specifically tailored to support distributed training for extensive models, and it is constructed upon the PyTorch framework, which excels in data parallelism. Additionally, the library continuously evolves to incorporate cutting-edge advancements in deep learning, ensuring it remains at the forefront of AI technology.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

PyTorch
Amazon SageMaker
Amazon Web Services (AWS)
Axolotl
BERT
Cake AI
CodeGPT
Comet LLM
DALL·E 2
Hugging Face
NVIDIA NeMo Megatron
Nurix
Python
TensorFlow

Integrations

PyTorch
Amazon SageMaker
Amazon Web Services (AWS)
Axolotl
BERT
Cake AI
CodeGPT
Comet LLM
DALL·E 2
Hugging Face
NVIDIA NeMo Megatron
Nurix
Python
TensorFlow

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

1994

Country

United States

Website

aws.amazon.com/sagemaker/train/

Vendor Details

Company Name

Microsoft

Founded

1975

Country

United States

Website

www.deepspeed.ai/

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Alternatives

Alternatives

AWS Neuron Reviews

AWS Neuron

Amazon Web Services
MXNet Reviews

MXNet

The Apache Software Foundation
AWS Neuron Reviews

AWS Neuron

Amazon Web Services