Best DeepSpeed Alternatives in 2026
Find the top alternatives to DeepSpeed currently available. Compare ratings, reviews, pricing, and features of DeepSpeed alternatives in 2026. Slashdot lists the best DeepSpeed alternatives on the market that offer competing products that are similar to DeepSpeed. Sort through DeepSpeed alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
783 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
RunPod
RunPod
205 RatingsRunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference. -
3
Unsloth
Unsloth
FreeUnsloth is an innovative open-source platform specifically crafted to enhance and expedite the fine-tuning and training process of Large Language Models (LLMs). This platform empowers users to develop customized models, such as ChatGPT, in just a single day, a remarkable reduction from the usual training time of 30 days, achieving speeds that can be up to 30 times faster than Flash Attention 2 (FA2) while significantly utilizing 90% less memory. It supports advanced fine-tuning methods like LoRA and QLoRA, facilitating effective customization for models including Mistral, Gemma, and Llama across its various versions. The impressive efficiency of Unsloth arises from the meticulous derivation of computationally demanding mathematical processes and the hand-coding of GPU kernels, which leads to substantial performance enhancements without necessitating any hardware upgrades. On a single GPU, Unsloth provides a tenfold increase in processing speed and can achieve up to 32 times improvement on multi-GPU setups compared to FA2, with its functionality extending to a range of NVIDIA GPUs from Tesla T4 to H100, while also being portable to AMD and Intel graphics cards. This versatility ensures that a wide array of users can take full advantage of Unsloth's capabilities, making it a compelling choice for those looking to push the boundaries of model training efficiency. -
4
Horovod
Horovod
FreeOriginally created by Uber, Horovod aims to simplify and accelerate the process of distributed deep learning, significantly reducing model training durations from several days or weeks to mere hours or even minutes. By utilizing Horovod, users can effortlessly scale their existing training scripts to leverage the power of hundreds of GPUs with just a few lines of Python code. It offers flexibility for deployment, as it can be installed on local servers or seamlessly operated in various cloud environments such as AWS, Azure, and Databricks. In addition, Horovod is compatible with Apache Spark, allowing a cohesive integration of data processing and model training into one streamlined pipeline. Once set up, the infrastructure provided by Horovod supports model training across any framework, facilitating easy transitions between TensorFlow, PyTorch, MXNet, and potential future frameworks as the landscape of machine learning technologies continues to progress. This adaptability ensures that users can keep pace with the rapid advancements in the field without being locked into a single technology. -
5
AWS Neuron
Amazon Web Services
It enables efficient training on Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances powered by AWS Trainium. Additionally, for model deployment, it facilitates both high-performance and low-latency inference utilizing AWS Inferentia-based Amazon EC2 Inf1 instances along with AWS Inferentia2-based Amazon EC2 Inf2 instances. With the Neuron SDK, users can leverage widely-used frameworks like TensorFlow and PyTorch to effectively train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal alterations to their code and no reliance on vendor-specific tools. The integration of the AWS Neuron SDK with these frameworks allows for seamless continuation of existing workflows, requiring only minor code adjustments to get started. For those involved in distributed model training, the Neuron SDK also accommodates libraries such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP), enhancing its versatility and scalability for various ML tasks. By providing robust support for these frameworks and libraries, it significantly streamlines the process of developing and deploying advanced machine learning solutions. -
6
GPT-NeoX
EleutherAI
FreeThis repository showcases an implementation of model parallel autoregressive transformers utilizing GPUs, leveraging the capabilities of the DeepSpeed library. It serves as a record of EleutherAI's framework designed for training extensive language models on GPU architecture. Currently, it builds upon NVIDIA's Megatron Language Model, enhanced with advanced techniques from DeepSpeed alongside innovative optimizations. Our goal is to create a centralized hub for aggregating methodologies related to the training of large-scale autoregressive language models, thereby fostering accelerated research and development in the field of large-scale training. We believe that by providing these resources, we can significantly contribute to the progress of language model research. -
7
PyTorch
PyTorch
Effortlessly switch between eager and graph modes using TorchScript, while accelerating your journey to production with TorchServe. The torch-distributed backend facilitates scalable distributed training and enhances performance optimization for both research and production environments. A comprehensive suite of tools and libraries enriches the PyTorch ecosystem, supporting development across fields like computer vision and natural language processing. Additionally, PyTorch is compatible with major cloud platforms, simplifying development processes and enabling seamless scaling. You can easily choose your preferences and execute the installation command. The stable version signifies the most recently tested and endorsed iteration of PyTorch, which is typically adequate for a broad range of users. For those seeking the cutting-edge, a preview is offered, featuring the latest nightly builds of version 1.10, although these may not be fully tested or supported. It is crucial to verify that you meet all prerequisites, such as having numpy installed, based on your selected package manager. Anaconda is highly recommended as the package manager of choice, as it effectively installs all necessary dependencies, ensuring a smooth installation experience for users. This comprehensive approach not only enhances productivity but also ensures a robust foundation for development. -
8
Amazon SageMaker Model Training streamlines the process of training and fine-tuning machine learning (ML) models at scale, significantly cutting down both time and costs while eliminating the need for infrastructure management. Users can leverage top-tier ML compute infrastructure, benefiting from SageMaker’s capability to seamlessly scale from a single GPU to thousands, adapting to demand as necessary. The pay-as-you-go model enables more effective management of training expenses, making it easier to keep costs in check. To accelerate the training of deep learning models, SageMaker’s distributed training libraries can divide extensive models and datasets across multiple AWS GPU instances, while also supporting third-party libraries like DeepSpeed, Horovod, or Megatron for added flexibility. Additionally, you can efficiently allocate system resources by choosing from a diverse range of GPUs and CPUs, including the powerful P4d.24xl instances, which are currently the fastest cloud training options available. With just one click, you can specify data locations and the desired SageMaker instances, simplifying the entire setup process for users. This user-friendly approach makes it accessible for both newcomers and experienced data scientists to maximize their ML training capabilities.
-
9
Ludwig
Uber AI
Ludwig serves as a low-code platform specifically designed for the development of tailored AI models, including large language models (LLMs) and various deep neural networks. With Ludwig, creating custom models becomes a straightforward task; you only need a simple declarative YAML configuration file to train an advanced LLM using your own data. It offers comprehensive support for learning across multiple tasks and modalities. The framework includes thorough configuration validation to identify invalid parameter combinations and avert potential runtime errors. Engineered for scalability and performance, it features automatic batch size determination, distributed training capabilities (including DDP and DeepSpeed), parameter-efficient fine-tuning (PEFT), 4-bit quantization (QLoRA), and the ability to handle larger-than-memory datasets. Users enjoy expert-level control, allowing them to manage every aspect of their models, including activation functions. Additionally, Ludwig facilitates hyperparameter optimization, offers insights into explainability, and provides detailed metric visualizations. Its modular and extensible architecture enables users to experiment with various model designs, tasks, features, and modalities with minimal adjustments in the configuration, making it feel like a set of building blocks for deep learning innovations. Ultimately, Ludwig empowers developers to push the boundaries of AI model creation while maintaining ease of use. -
10
AWS Deep Learning AMIs
Amazon
AWS Deep Learning AMIs (DLAMI) offer machine learning professionals and researchers a secure and curated collection of frameworks, tools, and dependencies to enhance deep learning capabilities in cloud environments. Designed for both Amazon Linux and Ubuntu, these Amazon Machine Images (AMIs) are pre-equipped with popular frameworks like TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, enabling quick deployment and efficient operation of these tools at scale. By utilizing these resources, you can create sophisticated machine learning models for the development of autonomous vehicle (AV) technology, thoroughly validating your models with millions of virtual tests. The setup and configuration process for AWS instances is expedited, facilitating faster experimentation and assessment through access to the latest frameworks and libraries, including Hugging Face Transformers. Furthermore, the incorporation of advanced analytics, machine learning, and deep learning techniques allows for the discovery of trends and the generation of predictions from scattered and raw health data, ultimately leading to more informed decision-making. This comprehensive ecosystem not only fosters innovation but also enhances operational efficiency across various applications. -
11
Amazon EC2 Trn2 Instances
Amazon
Amazon EC2 Trn2 instances, equipped with AWS Trainium2 chips, are specifically designed to deliver exceptional performance in the training of generative AI models, such as large language and diffusion models. Users can experience cost savings of up to 50% in training expenses compared to other Amazon EC2 instances. These Trn2 instances can accommodate as many as 16 Trainium2 accelerators, boasting an impressive compute power of up to 3 petaflops using FP16/BF16 and 512 GB of high-bandwidth memory. For enhanced data and model parallelism, they are built with NeuronLink, a high-speed, nonblocking interconnect, and offer a substantial network bandwidth of up to 1600 Gbps via the second-generation Elastic Fabric Adapter (EFAv2). Trn2 instances are part of EC2 UltraClusters, which allow for scaling up to 30,000 interconnected Trainium2 chips within a nonblocking petabit-scale network, achieving a remarkable 6 exaflops of compute capability. Additionally, the AWS Neuron SDK provides seamless integration with widely used machine learning frameworks, including PyTorch and TensorFlow, making these instances a powerful choice for developers and researchers alike. This combination of cutting-edge technology and cost efficiency positions Trn2 instances as a leading option in the realm of high-performance deep learning. -
12
Deep learning frameworks like TensorFlow, PyTorch, Caffe, Torch, Theano, and MXNet have significantly enhanced the accessibility of deep learning by simplifying the design, training, and application of deep learning models. Fabric for Deep Learning (FfDL, pronounced “fiddle”) offers a standardized method for deploying these deep-learning frameworks as a service on Kubernetes, ensuring smooth operation. The architecture of FfDL is built on microservices, which minimizes the interdependence between components, promotes simplicity, and maintains a stateless nature for each component. This design choice also helps to isolate failures, allowing for independent development, testing, deployment, scaling, and upgrading of each element. By harnessing the capabilities of Kubernetes, FfDL delivers a highly scalable, resilient, and fault-tolerant environment for deep learning tasks. Additionally, the platform incorporates a distribution and orchestration layer that enables efficient learning from large datasets across multiple compute nodes within a manageable timeframe. This comprehensive approach ensures that deep learning projects can be executed with both efficiency and reliability.
-
13
MXNet
The Apache Software Foundation
A hybrid front-end efficiently switches between Gluon eager imperative mode and symbolic mode, offering both adaptability and speed. The framework supports scalable distributed training and enhances performance optimization for both research and real-world applications through its dual parameter server and Horovod integration. It features deep compatibility with Python and extends support to languages such as Scala, Julia, Clojure, Java, C++, R, and Perl. A rich ecosystem of tools and libraries bolsters MXNet, facilitating a variety of use-cases, including computer vision, natural language processing, time series analysis, and much more. Apache MXNet is currently in the incubation phase at The Apache Software Foundation (ASF), backed by the Apache Incubator. This incubation stage is mandatory for all newly accepted projects until they receive further evaluation to ensure that their infrastructure, communication practices, and decision-making processes align with those of other successful ASF initiatives. By engaging with the MXNet scientific community, individuals can actively contribute, gain knowledge, and find solutions to their inquiries. This collaborative environment fosters innovation and growth, making it an exciting time to be involved with MXNet. -
14
Quickly set up a virtual machine on Google Cloud for your deep learning project using the Deep Learning VM Image, which simplifies the process of launching a VM with essential AI frameworks on Google Compute Engine. This solution allows you to initiate Compute Engine instances that come equipped with popular libraries such as TensorFlow, PyTorch, and scikit-learn, eliminating concerns over software compatibility. Additionally, you have the flexibility to incorporate Cloud GPU and Cloud TPU support effortlessly. The Deep Learning VM Image is designed to support both the latest and most widely used machine learning frameworks, ensuring you have access to cutting-edge tools like TensorFlow and PyTorch. To enhance the speed of your model training and deployment, these images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers, as well as the Intel® Math Kernel Library. By using this service, you can hit the ground running with all necessary frameworks, libraries, and drivers pre-installed and validated for compatibility. Furthermore, the Deep Learning VM Image provides a smooth notebook experience through its integrated support for JupyterLab, facilitating an efficient workflow for your data science tasks. This combination of features makes it an ideal solution for both beginners and experienced practitioners in the field of machine learning.
-
15
Sky-T1
NovaSky
FreeSky-T1-32B-Preview is an innovative open-source reasoning model crafted by the NovaSky team at UC Berkeley's Sky Computing Lab. It delivers performance comparable to proprietary models such as o1-preview on various reasoning and coding assessments, while being developed at a cost of less than $450, highlighting the potential for budget-friendly, advanced reasoning abilities. Fine-tuned from Qwen2.5-32B-Instruct, the model utilized a meticulously curated dataset comprising 17,000 examples spanning multiple fields, such as mathematics and programming. The entire training process was completed in just 19 hours using eight H100 GPUs with DeepSpeed Zero-3 offloading technology. Every component of this initiative—including the data, code, and model weights—is entirely open-source, allowing both academic and open-source communities to not only replicate but also improve upon the model's capabilities. This accessibility fosters collaboration and innovation in the realm of artificial intelligence research and development. -
16
Amazon EC2 Trn1 Instances
Amazon
$1.34 per hourThe Trn1 instances of Amazon Elastic Compute Cloud (EC2), driven by AWS Trainium chips, are specifically designed to enhance the efficiency of deep learning training for generative AI models, such as large language models and latent diffusion models. These instances provide significant cost savings of up to 50% compared to other similar Amazon EC2 offerings. They are capable of facilitating the training of deep learning and generative AI models with over 100 billion parameters, applicable in various domains, including text summarization, code generation, question answering, image and video creation, recommendation systems, and fraud detection. Additionally, the AWS Neuron SDK supports developers in training their models on AWS Trainium and deploying them on the AWS Inferentia chips. With seamless integration into popular frameworks like PyTorch and TensorFlow, developers can leverage their current codebases and workflows for training on Trn1 instances, ensuring a smooth transition to optimized deep learning practices. Furthermore, this capability allows businesses to harness advanced AI technologies while maintaining cost-effectiveness and performance. -
17
Caffe
BAIR
Caffe is a deep learning framework designed with a focus on expressiveness, efficiency, and modularity, developed by Berkeley AI Research (BAIR) alongside numerous community contributors. The project was initiated by Yangqing Jia during his doctoral studies at UC Berkeley and is available under the BSD 2-Clause license. For those interested, there is an engaging web image classification demo available for viewing! The framework’s expressive architecture promotes innovation and application development. Users can define models and optimizations through configuration files without the need for hard-coded elements. By simply toggling a flag, users can seamlessly switch between CPU and GPU, allowing for training on powerful GPU machines followed by deployment on standard clusters or mobile devices. The extensible nature of Caffe's codebase supports ongoing development and enhancement. In its inaugural year, Caffe was forked by more than 1,000 developers, who contributed numerous significant changes back to the project. Thanks to these community contributions, the framework remains at the forefront of state-of-the-art code and models. Caffe's speed makes it an ideal choice for both research experiments and industrial applications, with the capability to process upwards of 60 million images daily using a single NVIDIA K40 GPU, demonstrating its robustness and efficacy in handling large-scale tasks. This performance ensures that users can rely on Caffe for both experimentation and deployment in various scenarios. -
18
Axolotl
Axolotl
FreeAxolotl is an innovative open-source tool crafted to enhance the fine-tuning process of a variety of AI models, accommodating numerous configurations and architectures. This platform empowers users to train models using diverse methods such as full fine-tuning, LoRA, QLoRA, ReLoRA, and GPTQ. Additionally, users have the flexibility to customize their configurations through straightforward YAML files or by employing command-line interface overrides, while also being able to load datasets in various formats, whether custom or pre-tokenized. Axolotl seamlessly integrates with cutting-edge technologies, including xFormers, Flash Attention, Liger kernel, RoPE scaling, and multipacking, and it is capable of operating on single or multiple GPUs using Fully Sharded Data Parallel (FSDP) or DeepSpeed. Whether run locally or in the cloud via Docker, it offers robust support for logging results and saving checkpoints to multiple platforms, ensuring users can easily track their progress. Ultimately, Axolotl aims to make the fine-tuning of AI models not only efficient but also enjoyable, all while maintaining a high level of functionality and scalability. With its user-friendly design, it invites both novices and experienced practitioners to explore the depths of AI model training. -
19
Enhance the efficiency of your deep learning projects and reduce the time it takes to realize value through AI model training and inference. As technology continues to improve in areas like computation, algorithms, and data accessibility, more businesses are embracing deep learning to derive and expand insights in fields such as speech recognition, natural language processing, and image classification. This powerful technology is capable of analyzing text, images, audio, and video on a large scale, allowing for the generation of patterns used in recommendation systems, sentiment analysis, financial risk assessments, and anomaly detection. The significant computational resources needed to handle neural networks stem from their complexity, including multiple layers and substantial training data requirements. Additionally, organizations face challenges in demonstrating the effectiveness of deep learning initiatives that are executed in isolation, which can hinder broader adoption and integration. The shift towards more collaborative approaches may help mitigate these issues and enhance the overall impact of deep learning strategies within companies.
-
20
Huawei Cloud ModelArts
Huawei Cloud
ModelArts, an all-encompassing AI development platform from Huawei Cloud, is crafted to optimize the complete AI workflow for both developers and data scientists. This platform encompasses a comprehensive toolchain that facilitates various phases of AI development, including data preprocessing, semi-automated data labeling, distributed training, automated model creation, and versatile deployment across cloud, edge, and on-premises systems. It is compatible with widely used open-source AI frameworks such as TensorFlow, PyTorch, and MindSpore, while also enabling the integration of customized algorithms to meet unique project requirements. The platform's end-to-end development pipeline fosters enhanced collaboration among DataOps, MLOps, and DevOps teams, resulting in improved development efficiency by as much as 50%. Furthermore, ModelArts offers budget-friendly AI computing resources with a range of specifications, supporting extensive distributed training and accelerating inference processes. This flexibility empowers organizations to adapt their AI solutions to meet evolving business challenges effectively. -
21
Qualcomm Cloud AI SDK
Qualcomm
The Qualcomm Cloud AI SDK serves as a robust software suite aimed at enhancing the performance of trained deep learning models for efficient inference on Qualcomm Cloud AI 100 accelerators. It accommodates a diverse array of AI frameworks like TensorFlow, PyTorch, and ONNX, which empowers developers to compile, optimize, and execute models with ease. Offering tools for onboarding, fine-tuning, and deploying models, the SDK streamlines the entire process from preparation to production rollout. In addition, it includes valuable resources such as model recipes, tutorials, and sample code to support developers in speeding up their AI projects. This ensures a seamless integration with existing infrastructures, promoting scalable and efficient AI inference solutions within cloud settings. By utilizing the Cloud AI SDK, developers are positioned to significantly boost the performance and effectiveness of their AI-driven applications, ultimately leading to more innovative solutions in the field. -
22
Ray
Anyscale
FreeYou can develop on your laptop, then scale the same Python code elastically across hundreds or GPUs on any cloud. Ray converts existing Python concepts into the distributed setting, so any serial application can be easily parallelized with little code changes. With a strong ecosystem distributed libraries, scale compute-heavy machine learning workloads such as model serving, deep learning, and hyperparameter tuning. Scale existing workloads (e.g. Pytorch on Ray is easy to scale by using integrations. Ray Tune and Ray Serve native Ray libraries make it easier to scale the most complex machine learning workloads like hyperparameter tuning, deep learning models training, reinforcement learning, and training deep learning models. In just 10 lines of code, you can get started with distributed hyperparameter tune. Creating distributed apps is hard. Ray is an expert in distributed execution. -
23
Intel Tiber AI Cloud
Intel
FreeThe Intel® Tiber™ AI Cloud serves as a robust platform tailored to efficiently scale artificial intelligence workloads through cutting-edge computing capabilities. Featuring specialized AI hardware, including the Intel Gaudi AI Processor and Max Series GPUs, it enhances the processes of model training, inference, and deployment. Aimed at enterprise-level applications, this cloud offering allows developers to create and refine models using well-known libraries such as PyTorch. Additionally, with a variety of deployment choices, secure private cloud options, and dedicated expert assistance, Intel Tiber™ guarantees smooth integration and rapid deployment while boosting model performance significantly. This comprehensive solution is ideal for organizations looking to harness the full potential of AI technologies. -
24
Amazon Elastic Inference
Amazon
Amazon Elastic Inference provides an affordable way to enhance Amazon EC2 and Sagemaker instances or Amazon ECS tasks with GPU-powered acceleration, potentially cutting deep learning inference costs by as much as 75%. It is compatible with models built on TensorFlow, Apache MXNet, PyTorch, and ONNX. The term "inference" refers to the act of generating predictions from a trained model. In the realm of deep learning, inference can represent up to 90% of the total operational expenses, primarily for two reasons. Firstly, GPU instances are generally optimized for model training rather than inference, as training tasks can handle numerous data samples simultaneously, while inference typically involves processing one input at a time in real-time, resulting in minimal GPU usage. Consequently, relying solely on GPU instances for inference can lead to higher costs. Conversely, CPU instances lack the necessary specialization for matrix computations, making them inefficient and often too sluggish for deep learning inference tasks. This necessitates a solution like Elastic Inference, which optimally balances cost and performance in inference scenarios. -
25
OpenVINO
Intel
FreeThe Intel® Distribution of OpenVINO™ toolkit serves as an open-source AI development resource that speeds up inference on various Intel hardware platforms. This toolkit is crafted to enhance AI workflows, enabling developers to implement refined deep learning models tailored for applications in computer vision, generative AI, and large language models (LLMs). Equipped with integrated model optimization tools, it guarantees elevated throughput and minimal latency while decreasing the model size without sacrificing accuracy. OpenVINO™ is an ideal choice for developers aiming to implement AI solutions in diverse settings, spanning from edge devices to cloud infrastructures, thereby assuring both scalability and peak performance across Intel architectures. Ultimately, its versatile design supports a wide range of AI applications, making it a valuable asset in modern AI development. -
26
Distributed AI represents a computing approach that eliminates the necessity of transferring large data sets, enabling data analysis directly at its origin. Developed by IBM Research, the Distributed AI APIs consist of a suite of RESTful web services equipped with data and AI algorithms tailored for AI applications in hybrid cloud, edge, and distributed computing scenarios. Each API within the Distributed AI framework tackles the unique challenges associated with deploying AI technologies in such environments. Notably, these APIs do not concentrate on fundamental aspects of establishing and implementing AI workflows, such as model training or serving. Instead, developers can utilize their preferred open-source libraries like TensorFlow or PyTorch for these tasks. Afterward, you can encapsulate your application, which includes the entire AI pipeline, into containers for deployment at various distributed sites. Additionally, leveraging container orchestration tools like Kubernetes or OpenShift can greatly enhance the automation of the deployment process, ensuring efficiency and scalability in managing distributed AI applications. This innovative approach ultimately streamlines the integration of AI into diverse infrastructures, fostering smarter solutions.
-
27
Hugging Face Transformers
Hugging Face
$9 per monthTransformers is a versatile library that includes pretrained models for natural language processing, computer vision, audio, and multimodal tasks, facilitating both inference and training. With the Transformers library, you can effectively train models tailored to your specific data, create inference applications, and utilize large language models for text generation. Visit the Hugging Face Hub now to discover a suitable model and leverage Transformers to kickstart your projects immediately. This library provides a streamlined and efficient inference class that caters to various machine learning tasks, including text generation, image segmentation, automatic speech recognition, and document question answering, among others. Additionally, it features a robust trainer that incorporates advanced capabilities like mixed precision, torch.compile, and FlashAttention, making it ideal for both training and distributed training of PyTorch models. The library ensures rapid text generation through large language models and vision-language models, and each model is constructed from three fundamental classes (configuration, model, and preprocessor), allowing for quick deployment in either inference or training scenarios. Overall, Transformers empowers users with the tools needed to create sophisticated machine learning solutions with ease and efficiency. -
28
TorchMetrics
TorchMetrics
FreeTorchMetrics comprises over 90 implementations of metrics designed for PyTorch, along with a user-friendly API that allows for the creation of custom metrics. It provides a consistent interface that enhances reproducibility while minimizing redundant code. The library is suitable for distributed training and has undergone thorough testing to ensure reliability. It features automatic batch accumulation and seamless synchronization across multiple devices. You can integrate TorchMetrics into any PyTorch model or utilize it within PyTorch Lightning for added advantages, ensuring that your data aligns with the same device as your metrics at all times. Additionally, you can directly log Metric objects in Lightning, further reducing boilerplate code. Much like torch.nn, the majority of metrics are available in both class-based and functional formats. The functional versions consist of straightforward Python functions that accept torch.tensors as inputs and yield the corresponding metric as a torch.tensor output. Virtually all functional metrics come with an equivalent class-based metric, providing users with flexible options for implementation. This versatility allows developers to choose the approach that best fits their coding style and project requirements. -
29
DeepCube
DeepCube
DeepCube is dedicated to advancing deep learning technologies, enhancing the practical application of AI systems in various environments. Among its many patented innovations, the company has developed techniques that significantly accelerate and improve the accuracy of training deep learning models while also enhancing inference performance. Their unique framework is compatible with any existing hardware, whether in data centers or edge devices, achieving over tenfold improvements in speed and memory efficiency. Furthermore, DeepCube offers the sole solution for the effective deployment of deep learning models on intelligent edge devices, overcoming a significant barrier in the field. Traditionally, after completing the training phase, deep learning models demand substantial processing power and memory, which has historically confined their deployment primarily to cloud environments. This innovation by DeepCube promises to revolutionize how deep learning models can be utilized, making them more accessible and efficient across diverse platforms. -
30
Amazon SageMaker HyperPod
Amazon
Amazon SageMaker HyperPod is a specialized and robust computing infrastructure designed to streamline and speed up the creation of extensive AI and machine learning models by managing distributed training, fine-tuning, and inference across numerous clusters equipped with hundreds or thousands of accelerators, such as GPUs and AWS Trainium chips. By alleviating the burdens associated with developing and overseeing machine learning infrastructure, it provides persistent clusters capable of automatically identifying and rectifying hardware malfunctions, resuming workloads seamlessly, and optimizing checkpointing to minimize the risk of interruptions — thus facilitating uninterrupted training sessions that can last for months. Furthermore, HyperPod features centralized resource governance, allowing administrators to establish priorities, quotas, and task-preemption rules to ensure that computing resources are allocated effectively among various tasks and teams, which maximizes utilization and decreases idle time. It also includes support for “recipes” and pre-configured settings, enabling rapid fine-tuning or customization of foundational models, such as Llama. This innovative infrastructure not only enhances efficiency but also empowers data scientists to focus more on developing their models rather than managing the underlying technology. -
31
AWS EC2 Trn3 Instances
Amazon
The latest Amazon EC2 Trn3 UltraServers represent AWS's state-of-the-art accelerated computing instances, featuring proprietary Trainium3 AI chips designed specifically for optimal performance in deep-learning training and inference tasks. These UltraServers come in two variants: the "Gen1," which is equipped with 64 Trainium3 chips, and the "Gen2," offering up to 144 Trainium3 chips per server. The Gen2 variant boasts an impressive capability of delivering 362 petaFLOPS of dense MXFP8 compute, along with 20 TB of HBM memory and an astonishing 706 TB/s of total memory bandwidth, positioning it among the most powerful AI computing platforms available. To facilitate seamless interconnectivity, a cutting-edge "NeuronSwitch-v1" fabric is employed, enabling all-to-all communication patterns that are crucial for large model training, mixture-of-experts frameworks, and extensive distributed training setups. This technological advancement in the architecture underscores AWS's commitment to pushing the boundaries of AI performance and efficiency. -
32
GPUonCLOUD
GPUonCLOUD
$1 per hourIn the past, tasks such as deep learning, 3D modeling, simulations, distributed analytics, and molecular modeling could take several days or even weeks to complete. Thanks to GPUonCLOUD’s specialized GPU servers, these processes can now be accomplished in just a few hours. You can choose from a range of pre-configured systems or ready-to-use instances equipped with GPUs that support popular deep learning frameworks like TensorFlow, PyTorch, MXNet, and TensorRT, along with libraries such as the real-time computer vision library OpenCV, all of which enhance your AI/ML model-building journey. Among the diverse selection of GPUs available, certain servers are particularly well-suited for graphics-intensive tasks and multiplayer accelerated gaming experiences. Furthermore, instant jumpstart frameworks significantly boost the speed and flexibility of the AI/ML environment while ensuring effective and efficient management of the entire lifecycle. This advancement not only streamlines workflows but also empowers users to innovate at an unprecedented pace. -
33
SynapseAI
Habana Labs
Our accelerator hardware is specifically crafted to enhance the performance and efficiency of deep learning, while prioritizing usability for developers. SynapseAI aims to streamline the development process by providing support for widely-used frameworks and models, allowing developers to work with the tools they are familiar with and prefer. Essentially, SynapseAI and its extensive array of tools are tailored to support deep learning developers in their unique workflows, empowering them to create projects that align with their preferences and requirements. Additionally, Habana-based deep learning processors not only safeguard existing software investments but also simplify the process of developing new models, catering to both the training and deployment needs of an ever-expanding array of models that shape the landscape of deep learning, generative AI, and large language models. This commitment to adaptability and support ensures that developers can thrive in a rapidly evolving technological environment. -
34
Determined AI
Determined AI
With Determined, you can engage in distributed training without needing to modify your model code, as it efficiently manages the provisioning of machines, networking, data loading, and fault tolerance. Our open-source deep learning platform significantly reduces training times to mere hours or minutes, eliminating the lengthy process of days or weeks. Gone are the days of tedious tasks like manual hyperparameter tuning, re-running failed jobs, and the constant concern over hardware resources. Our advanced distributed training solution not only surpasses industry benchmarks but also requires no adjustments to your existing code and seamlessly integrates with our cutting-edge training platform. Additionally, Determined features built-in experiment tracking and visualization that automatically logs metrics, making your machine learning projects reproducible and fostering greater collaboration within your team. This enables researchers to build upon each other's work and drive innovation in their respective fields, freeing them from the stress of managing errors and infrastructure. Ultimately, this streamlined approach empowers teams to focus on what they do best—creating and refining their models. -
35
NVIDIA FLARE
NVIDIA
FreeNVIDIA FLARE, which stands for Federated Learning Application Runtime Environment, is a versatile, open-source SDK designed to enhance federated learning across various sectors, such as healthcare, finance, and the automotive industry. This platform enables secure and privacy-focused AI model training by allowing different parties to collaboratively develop models without the need to share sensitive raw data. Supporting a range of machine learning frameworks—including PyTorch, TensorFlow, RAPIDS, and XGBoost—FLARE seamlessly integrates into existing processes. Its modular architecture not only fosters customization but also ensures scalability, accommodating both horizontal and vertical federated learning methods. This SDK is particularly well-suited for applications that demand data privacy and adherence to regulations, including fields like medical imaging and financial analytics. Users can conveniently access and download FLARE through the NVIDIA NVFlare repository on GitHub and PyPi, making it readily available for implementation in diverse projects. Overall, FLARE represents a significant advancement in the pursuit of privacy-preserving AI solutions. -
36
alwaysAI
alwaysAI
alwaysAI offers a straightforward and adaptable platform for developers to create, train, and deploy computer vision applications across a diverse range of IoT devices. You can choose from an extensive library of deep learning models or upload your custom models as needed. Our versatile and customizable APIs facilitate the rapid implementation of essential computer vision functionalities. You have the capability to quickly prototype, evaluate, and refine your projects using an array of camera-enabled ARM-32, ARM-64, and x86 devices. Recognize objects in images by their labels or classifications, and identify and count them in real-time video streams. Track the same object through multiple frames, or detect faces and entire bodies within a scene for counting or tracking purposes. You can also outline and define boundaries around distinct objects, differentiate essential elements in an image from the background, and assess human poses, fall incidents, and emotional expressions. Utilize our model training toolkit to develop an object detection model aimed at recognizing virtually any object, allowing you to create a model specifically designed for your unique requirements. With these powerful tools at your disposal, you can revolutionize the way you approach computer vision projects. -
37
Azure Machine Learning
Microsoft
Streamline the entire machine learning lifecycle from start to finish. Equip developers and data scientists with an extensive array of efficient tools for swiftly building, training, and deploying machine learning models. Enhance the speed of market readiness and promote collaboration among teams through leading-edge MLOps—akin to DevOps but tailored for machine learning. Drive innovation within a secure, reliable platform that prioritizes responsible AI practices. Cater to users of all expertise levels with options for both code-centric and drag-and-drop interfaces, along with automated machine learning features. Implement comprehensive MLOps functionalities that seamlessly align with existing DevOps workflows, facilitating the management of the entire machine learning lifecycle. Emphasize responsible AI by providing insights into model interpretability and fairness, securing data through differential privacy and confidential computing, and maintaining control over the machine learning lifecycle with audit trails and datasheets. Additionally, ensure exceptional compatibility with top open-source frameworks and programming languages such as MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R, thus broadening accessibility and usability for diverse projects. By fostering an environment that promotes collaboration and innovation, teams can achieve remarkable advancements in their machine learning endeavors. -
38
SuperDuperDB
SuperDuperDB
Effortlessly create and oversee AI applications without transferring your data through intricate pipelines or specialized vector databases. You can seamlessly connect AI and vector search directly with your existing database, allowing for real-time inference and model training. With a single, scalable deployment of all your AI models and APIs, you will benefit from automatic updates as new data flows in without the hassle of managing an additional database or duplicating your data for vector search. SuperDuperDB facilitates vector search within your current database infrastructure. You can easily integrate and merge models from Sklearn, PyTorch, and HuggingFace alongside AI APIs like OpenAI, enabling the development of sophisticated AI applications and workflows. Moreover, all your AI models can be deployed to compute outputs (inference) directly in your datastore using straightforward Python commands, streamlining the entire process. This approach not only enhances efficiency but also reduces the complexity usually involved in managing multiple data sources. -
39
Tencent Cloud TI Platform
Tencent
The Tencent Cloud TI Platform serves as a comprehensive machine learning service tailored for AI engineers, facilitating the AI development journey from data preprocessing all the way to model building, training, and evaluation, as well as deployment. This platform is preloaded with a variety of algorithm components and supports a range of algorithm frameworks, ensuring it meets the needs of diverse AI applications. By providing a seamless machine learning experience that encompasses the entire workflow, the Tencent Cloud TI Platform enables users to streamline the process from initial data handling to the final assessment of models. Additionally, it empowers even those new to AI to automatically construct their models, significantly simplifying the training procedure. The platform's auto-tuning feature further boosts the efficiency of parameter optimization, enabling improved model performance. Moreover, Tencent Cloud TI Platform offers flexible CPU and GPU resources that can adapt to varying computational demands, alongside accommodating different billing options, making it a versatile choice for users with diverse needs. This adaptability ensures that users can optimize costs while efficiently managing their machine learning workflows. -
40
NVIDIA NGC
NVIDIA
NVIDIA GPU Cloud (NGC) serves as a cloud platform that harnesses GPU acceleration for deep learning and scientific computations. It offers a comprehensive catalog of fully integrated containers for deep learning frameworks designed to optimize performance on NVIDIA GPUs, whether in single or multi-GPU setups. Additionally, the NVIDIA train, adapt, and optimize (TAO) platform streamlines the process of developing enterprise AI applications by facilitating quick model adaptation and refinement. Through a user-friendly guided workflow, organizations can fine-tune pre-trained models with their unique datasets, enabling them to create precise AI models in mere hours instead of the traditional months, thereby reducing the necessity for extensive training periods and specialized AI knowledge. If you're eager to dive into the world of containers and models on NGC, you’ve found the ideal starting point. Furthermore, NGC's Private Registries empower users to securely manage and deploy their proprietary assets, enhancing their AI development journey. -
41
Intel Open Edge Platform
Intel
The Intel Open Edge Platform streamlines the process of developing, deploying, and scaling AI and edge computing solutions using conventional hardware while achieving cloud-like efficiency. It offers a carefully selected array of components and workflows designed to expedite the creation, optimization, and development of AI models. Covering a range of applications from vision models to generative AI and large language models, the platform equips developers with the necessary tools to facilitate seamless model training and inference. By incorporating Intel’s OpenVINO toolkit, it guarantees improved performance across Intel CPUs, GPUs, and VPUs, enabling organizations to effortlessly implement AI applications at the edge. This comprehensive approach not only enhances productivity but also fosters innovation in the rapidly evolving landscape of edge computing. -
42
Automaton AI
Automaton AI
Utilizing Automaton AI's ADVIT platform, you can effortlessly create, manage, and enhance high-quality training data alongside DNN models, all from a single interface. The system automatically optimizes data for each stage of the computer vision pipeline, allowing for a streamlined approach to data labeling processes and in-house data pipelines. You can efficiently handle both structured and unstructured datasets—be it video, images, or text—while employing automatic functions that prepare your data for every phase of the deep learning workflow. Once the data is accurately labeled and undergoes quality assurance, you can proceed with training your own model effectively. Deep neural network training requires careful hyperparameter tuning, including adjustments to batch size and learning rates, which are essential for maximizing model performance. Additionally, you can optimize and apply transfer learning to enhance the accuracy of your trained models. After the training phase, the model can be deployed into production seamlessly. ADVIT also supports model versioning, ensuring that model development and accuracy metrics are tracked in real-time. By leveraging a pre-trained DNN model for automatic labeling, you can further improve the overall accuracy of your models, paving the way for more robust applications in the future. This comprehensive approach to data and model management significantly enhances the efficiency of machine learning projects. -
43
Create, execute, and oversee AI models while enhancing decision-making at scale across any cloud infrastructure. IBM Watson Studio enables you to implement AI seamlessly anywhere as part of the IBM Cloud Pak® for Data, which is the comprehensive data and AI platform from IBM. Collaborate across teams, streamline the management of the AI lifecycle, and hasten the realization of value with a versatile multicloud framework. You can automate the AI lifecycles using ModelOps pipelines and expedite data science development through AutoAI. Whether preparing or constructing models, you have the option to do so visually or programmatically. Deploying and operating models is made simple with one-click integration. Additionally, promote responsible AI governance by ensuring your models are fair and explainable to strengthen business strategies. Leverage open-source frameworks such as PyTorch, TensorFlow, and scikit-learn to enhance your projects. Consolidate development tools, including leading IDEs, Jupyter notebooks, JupyterLab, and command-line interfaces, along with programming languages like Python, R, and Scala. Through the automation of AI lifecycle management, IBM Watson Studio empowers you to build and scale AI solutions with an emphasis on trust and transparency, ultimately leading to improved organizational performance and innovation.
-
44
Amazon EC2 P4 Instances
Amazon
$11.57 per hourAmazon EC2 P4d instances are designed for optimal performance in machine learning training and high-performance computing (HPC) applications within the cloud environment. Equipped with NVIDIA A100 Tensor Core GPUs, these instances provide exceptional throughput and low-latency networking capabilities, boasting 400 Gbps instance networking. P4d instances are remarkably cost-effective, offering up to a 60% reduction in expenses for training machine learning models, while also delivering an impressive 2.5 times better performance for deep learning tasks compared to the older P3 and P3dn models. They are deployed within expansive clusters known as Amazon EC2 UltraClusters, which allow for the seamless integration of high-performance computing, networking, and storage resources. This flexibility enables users to scale their operations from a handful to thousands of NVIDIA A100 GPUs depending on their specific project requirements. Researchers, data scientists, and developers can leverage P4d instances to train machine learning models for diverse applications, including natural language processing, object detection and classification, and recommendation systems, in addition to executing HPC tasks such as pharmaceutical discovery and other complex computations. These capabilities collectively empower teams to innovate and accelerate their projects with greater efficiency and effectiveness. -
45
Deeplearning4j
Deeplearning4j
DL4J leverages state-of-the-art distributed computing frameworks like Apache Spark and Hadoop to enhance the speed of training processes. When utilized with multiple GPUs, its performance matches that of Caffe. Fully open-source under the Apache 2.0 license, the libraries are actively maintained by both the developer community and the Konduit team. Deeplearning4j, which is developed in Java, is compatible with any language that runs on the JVM, including Scala, Clojure, and Kotlin. The core computations are executed using C, C++, and CUDA, while Keras is designated as the Python API. Eclipse Deeplearning4j stands out as the pioneering commercial-grade, open-source, distributed deep-learning library tailored for Java and Scala applications. By integrating with Hadoop and Apache Spark, DL4J effectively introduces artificial intelligence capabilities to business settings, enabling operations on distributed CPUs and GPUs. Training a deep-learning network involves tuning numerous parameters, and we have made efforts to clarify these settings, allowing Deeplearning4j to function as a versatile DIY resource for developers using Java, Scala, Clojure, and Kotlin. With its robust framework, DL4J not only simplifies the deep learning process but also fosters innovation in machine learning across various industries.