Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Minimize false positives and leverage machine learning (ML) to effectively identify anomalies in business performance indicators. Investigate the underlying causes of these anomalies by clustering similar outliers together for analysis. Provide a summary of these root causes and prioritize them based on their impact. Ensure a smooth integration with AWS databases, storage services, and external SaaS platforms for comprehensive metrics monitoring and anomaly detection. Set up automated alerts and responses tailored to the detection of anomalies. Utilize Lookout for Metrics, which employs ML to both discover and analyze anomalies in business and operational datasets. The challenge of recognizing unexpected anomalies is compounded by the limitations of traditional manual methods that are prone to errors. Lookout for Metrics simplifies the detection and diagnosis of data inconsistencies without requiring any expertise in artificial intelligence (AI). Monitor irregular fluctuations in subscriptions, conversion rates, and revenue to remain vigilant about sudden market shifts, ultimately enhancing strategic decision-making capabilities. By adopting these advanced techniques, businesses can improve their overall performance management and response strategies.
Description
IBM Z Anomaly Analytics is a sophisticated software solution designed to detect and categorize anomalies, enabling organizations to proactively address operational challenges within their environments. By leveraging historical log and metric data from IBM Z, the software constructs a model that represents typical operational behavior. This model is then utilized to assess real-time data for any deviations that indicate unusual behavior. Following this, a correlation algorithm systematically organizes and evaluates these anomalies, offering timely alerts to operational teams regarding potential issues. In the fast-paced digital landscape today, maintaining the availability of essential services and applications is crucial. For businesses operating with hybrid applications, including those on IBM Z, identifying the root causes of issues has become increasingly challenging due to factors such as escalating costs, a shortage of skilled professionals, and shifts in user behavior. By detecting anomalies in both log and metric data, organizations can proactively uncover operational issues, thereby preventing expensive incidents and ensuring smoother operations. Ultimately, this advanced analytics capability not only enhances operational efficiency but also supports better decision-making processes within enterprises.
API Access
Has API
API Access
Has API
Integrations
AWS Lambda
Amazon CloudWatch
Amazon Redshift
Amazon S3
Amazon Simple Notification Service (SNS)
IBM Z
Integrations
AWS Lambda
Amazon CloudWatch
Amazon Redshift
Amazon S3
Amazon Simple Notification Service (SNS)
IBM Z
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
1994
Country
United States
Website
aws.amazon.com/lookout-for-metrics/
Vendor Details
Company Name
IBM
Founded
1911
Country
United States
Website
www.ibm.com/products/z-anomaly-analytics
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization